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Abstract —Views and their updates have long been a fundamental technology required in a wide range of applications. However, it has
been known that updates through views is a classical intractable problem. In this paper, we propose a novel, data-oriented approach
to this problem that provides a practical support for view updates. In particular, we propose a summarization of the source database
of views, which serves as an update filter. The update filter aims to efficiently reject untranslatable view updates by estimating the
side effects of the updates, thereby avoiding costly translation analysis. For applications where estimation errors are not preferred, our
update filter can be tuned to be exact. In this paper, we present our approach with SPJ views, an important class of view definitions. We
first revise the notion of estimation errors to quantify the filter's qualities. We then propose a novel join cardinality summary (JCar d)
derived from cardinality equivalence. An estimation algorithm is proposed. Finally, we present optimizations enabling the construction
of an accurate JCar d through heuristics and sampling. Our extensive experiments show that update filters are efficient and can be
easily tuned to produce accurate estimations on TPC-H and DBLP.

Index Terms —View update, side-effect estimation, relational database
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[35]. It is evident that these applications not only quemyt b v s, NY | P |G| A ug: insert (S5,FL,Ps,Cs,A4)

also update views as if they were the actual database. Updaté? 52 NY [ P[C |43

on views are translated to updates on the source databaselgi of 1. An example of a view and source database tables

the views, and the views and its source databases must keegp' ' P

consistent after updates. that extensively exploits data summaries in source dagsbas

Example 1.1: To illustrate the view update problem, let(in addition to schema information and view definitions) to

us consider an example as shown in Fig. 1. Suppose @xendpractical support of view update(s)o our knowledge,

have a viewV that joins Product, Supplier, Order, excepting theoretical studies on complement views, priakw

and Agency. (For illustration purposes, this example omitdias not explicitly exploited summaries of source data.

integrity constraints.) Suppose we insest (FL, Ps, C3, As) View update analysis can often be computationally expen-

into V' as indicated by:;. The only way is to inserty,, FL) sive. For instance, the view update problems under many

into Supplier and A5, Fs) into Agency. However, since settings are NP-hard [13], [14]. View update analysis ideki

tuple p, is also joinable with tuples;, the insertions of §4, two major steps: side-effect analysis and view update l@ans

FL) and (A5, Fs) cause an unspecified effect of insertirfg( tion. Much extant work directly translates view updatesialvh

LA, Ps, C3, As) into V. In fact, we cannot translatg without can sometimes be inefficient. In contrast, we focus on side-

causing extraneous tuple(s) n. effect analysis. In addition, we observe that in practidgeyw
Updates through views have been one of the classicgidates often cause side effects. We propose to reject (also

problems in databases. However, data are now ubiquitaegerred tofilter) such view updates early in our side-effect

and often provide insights to seemingly hard problemg,( detection. Only side-effect free updates are passed todbe n

[8]). In this paper, we propose a new data-oriented approag$sarily heuristic update translation. More importaniiaen

certain errors in the detection are allowgavhich have not
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to database schemas and view definitions.  _Untianslatable reject (1p)
Overview of our updater. Fig. 2 depicts an overview of i Sde-efect | () view
our proposed updater. (i) The side-effect detector efftgien oo S | e | v

estimates side effects caused by a view update. (ii) It tgjec view updat rensn

those with side effects. The detector can be tuned to be exact @ " "5 e o e fier

(i.e, no estimation error such that no tuple in a source Keys: . true  flse: p posiives: and n: negatves

database is ever summarized. (iii) Updates of the view thafy. 2. The overview of our data-oriented view updater

are not filtered by the detector are processed by an update

translator. (iv) Translatable view updates are appliedh® tinstance, following up on Example 1.2, if view updates hgvin
database, and the view and the side-effect detector. Our sgjale effects account far% of all updates, our updater reduces
dater is independent of translation algorithms. For itatsotn the time of view update analysis by up i186. We observe
purposes, we assume the heuristicssaf [12], amongst the from popular real-world and synthetic benchmark dataseds a
ample work on translation algorithms. In this paper, we ®ocuandom updates that view updates with side effects can be
on the details of a side-effect detector. clearly more than those without. Thus, in practice, our side
Example 1.2: The performance improvement from a sideeffect detector has a high potential of avoiding potentiall
effect detector can be illustrated via a simple experimétti w costly update translations.

TPC-H benchmark dataset (1G bytes) and a view definiti
derived from a simplified Q7 of the benchmark. (The details
Q7 are presented in Sec. 10.) Note that the side-effecttdeted. We show thakL divergence can serve as an upper bound of
is tunable to compromise between estimation time and errife estimation error of our side-effect detector. Furtieem

In the experiment, the detection time of Q7 is approximately€ revise the notion of errors of estimation.

3s whereas the estimation time is smaller than one second. YVeye propose a novel summary structure for our side-effect
can easily tune the detector to be error free. Let us denete Hyiector, calledioin Cardinality summaryCar d. At the core
side-effect estimation time as Assume variable” captures of jcard is the notion of cardinality equivalence of tuples.
the time for update translation which is at least 100s. Thag,, g comprises two structures: (i) database summaries and

is, t < T'. Further assume that 20% of view updates are sid@'I a set of candidate tuples. We present the construction o
effect free view updates, whereas 80% of the updates hage Sjgtr g and side-effect estimation algorithms.

effects. Without the side-effect detector, the view update

is simply T (i.e., at least 100s), whereas the view update time e propose techniques to support side-effect estimations
with a side-effect detector with no observed error4€.27. ©f insertions, deletions, and replacemeots the SJ view. To

Therefore, the view update analysis time is reduced by aim&&/PPOrt projections, we propose an extensiod @ir d based
80%. fromT to #+0.2T.. on value-cardinality equivalence.

Detecting side effects can be significantly more efficient we formally define two optimization problems ircar d
than translating updates (recall Example 1.2), as a detect@nstruction, and propose a heuristic and a sampling saluti
only requires to signify theabsenceand presenceof side to these problems, respectively. In particular, (i) we leligh
effects. To support this, we proposelain Cardinality Sum- that our candidate tuple selection problem is equivalent to
mary (JCar d). The novelty ofJCar d relies on the structures the Minimum Set Covernsc) problem. We therefore adopt
of join cardinality equivalence classesnd candidate view heuristics formsc to address our problem. (i) To determine
tuples First, (i) we summarize the tuples of a database hie optimal representation of a view definition, we employ a
equivalence classesiCard is often very small and side- simple sampling techniqueeg estimation of proportion) to
effect estimation odCar d is efficient. Although the estimated quantify the estimation error of view definition represdiotas.
count of side effects using the equivalence classes mayrbe
from the exact one, it is sufficient to detect the presence
side effects. Second, (ii) to support accurate estimatioes
propose to refine the classes by selecting certain candi
view tuples based on how likely they are to appear in vie
Our experiments show that using a small number of candid
tuples leads to highly accurate estimations. Organization. The rest of this paper is organized as follows:

We remark that due to the nature of the view updat®ec. 2 presents the related work. Sec. 3 provides preliramar
problem, any practical algorithm that runs in PTIME necand the problem statement. We define the notion of errors for
essarily rejects some translatable updates. Thus, didet-efside-effect estimation in Sec. 4. Our join cardinality suanyn
estimation allows to introduce a small number of additiondlCar d is presented in Sec. 5, and Sec. 6 presents estimation
errors but further optimize the detection time. In Examp& 1 algorithms oniCar d. We study howd Car d supports deletions
the detection time was around 3s and the estimation time vwasd replacements in Sec. 7, and projections are supported
smaller than one second, whereas our summarization did moSec. 8. Next, Sec. 9 addresses two optimization problems
introduce errors. in the construction ofiCar d. An experimental evaluation is

Finally, the overall benefit of the side-effect detectobals- presented in Sec. 10. Finally, Sec. 11 concludes this wadik. A
pends on the percentage of view updates with side effects. Booofs are presented in Appendix A.
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%aWe conduct a set of extensive experiments with synthetic

and real datasets that verifies the effectiveness and efficie

d Eeour proposed techniques and compare with one of the
test related work. Our experiments show that our sideceff

i'%tector can be easily tuned to be accurate.



TABLE 1

2 RELATED WORK .
Table of frequently used notations

H H H e I database instance Ror R; relation
The view update problem is one _o_f the _classmal problems v o 7 e | foin tree (rooted afe)
in databases [15], [18], [19]ln addition, view updates are | v=y(1) | view G database graph
involved in recent research and applications, such as1%], [ ty a tuple in view G* source graph
t; segment oft,, for R; G~ negative graph

[20], [36]. Due to space constraints, this section only presents
certain non-exhaustive representative works relevantuo @he view maintenance problem. However, view maintenance is
approach. One may consult the literature for more compleige “inverse” problem of view update. Specifically, the fem
reviews of the probleme(g, [11], [30]). propagates updates of source databases to views, wheeeas th
Previous researchers [15], [19], [29] studied the view tg@ddatter propagates updates of views to source databases.
problem under various view definition syntaxesg, select,  There are some studies of view update with lineage tracing
project, acyclic join) and constraints (special forms afnary  (sometimes referred to as data provenance) in the literatur
and foreign key constraints and functional dependenciés) |Gneage describes the origins of data and/or its processing
source databases. Prior results suggest that limited suppestory in databases [9], [17]. Lineage has been studied
of view updates can be achieved irBMss. In particular, a in various application contextse(g. data warehouse [17],
seminal paper by Dayal and Bernstein [19] showed that th@certainty data [1], [46], scientific data [6]). Speciflgal
view update problem was undecidable under various settingsii et al. [17] proposed techniques to trace the lineage of
Different from other existing works, Keller [29] defined fiveview tuples and their transformations in data warehouses.
criteria of correctness of view update translations angp@sed However, [17] focuses on lineage computation and does not
algorithms to enforce correct update translations. Inrestit study view update. The Rio project [46] aims at integrating
this paper focuses on capitalizing on a view's source data fpe management of data, data accuracy and its lineage. A
practical support of view updates. prototype of RI0 can be found iruLpB [1]. However, TRIO
Bancilhon and Spyratos proposed the seminal work @mduLDB focus on uncertain data. More importantly, [1], [17]
view complements [15]. View updates could be translatefbtermine exact lineage. As motivated, if adopted, exalet-si
without side effects if the updates resulted in unchanged vi effect detection can be inefficient. In contrast, we propose
complementsd.k.atranslation under a constant complementan estimator that can be tuned to be inexact. Green et al.
The results of view complements were followed-up in thg5] proposed @CHESTRAthat uses lineage to support data
proposal of “consistent views” [24]. View complements argharing across large communities and propagates updates fr
source data that are analyzed with view translation. Fondione peer to another. In contrast, we study propagating epdat
the minimum view complement is, in general, intractable],[33of views to source databases. Bhagwat et al. [2] proposed an
[34] and related research covers only the theoretical @spesannotation management system. It associates an annotation
of view complements. To our knowledge no research on teach cell of a relation, which is termedwbkereprovenance in
practical applications of view complements exists. [10]. However,whereprovenance misses the join information
Other related research includes updates throxghviews of view tuples, as the join attributes may be projected out.
[4], [7], [12], [45]. One stream of researcte.§. [7]) cast In comparison, the view update problem studied in this paper
an XML view into relational views and exploited relationakequireswhy-provenance [10]. Cui et al. [16] and Buneman
techniques to solve th&MWL view update problem. Another et al. [10] usedwhy-provenance to support view deletions.
stream of work €.g, [4], [12]) addressed updates througtAs presented in [16], [41], it is not clear how lineage to
recursiveXML views. Previous work [12] used source data teupport insertions, as tuples to-be-inserted (and herctcéhair
encode anXML view update as @AT instance and used alineage) in general do not exist in the views. In comparises,
SAT solver to determine update translation. Yet, how sourseipport both insertions and deletions. Due to space réstrjc
data can be exploited to optimize update translation resnaine refer the interested readers to [41] for details of lireag
unexplored. Recently, a framework with polymorphic type In relational databases, selectivity estimation is onehef t
inferences and lineage tracing approaches has been pbpdes steps in query optimization. Query optimizers rely on
to support updates through restrictéd. views [20]. However, accurate result counts of (sub-)queries to quantify etialna
its advantages may not be obvious for relational views.  times of query plans. Classical techniques include buidin
Recent progress on view updates includes the follows. Biistograms of data and utilizing statistical assumptisnsh as
directional transformation otrees [21] permits operations uniform distribution and independence of join predicat3].
for universal data (concrete tree and abstract view) synchiRecently, Getoor et al. [22] proposed a uniform framework
nization and relational view updates [3]. Kotidis et al. [31to estimate the count of select-and-join queries, derivethf
introduced and exploited physical IDs for view updates,althi Bayesian networks. Bayesian networks minimize overall
requires an intrusion on the physical layero¥mss. Boneva errors, whereas side-effect estimation intuitively fasion
et al. [5] proposed tree automata techniques for deteriginiamall errors only and large errors are simply irrelevant.
update programs for a fragmentXvL view updates, with and  Up-to-date, the support of updates through views in com-
without constraints. Liu et al. [36] proposed the view updaimercial relationalbBmss (e.g., [27], [39], [42]) is provided
analysis in a pureXM. context. Cong et al. [13], [14] studiedfor rather restricted views. In contrast, this work promoaa
the time complexities of various versions of view update. optimization of side-effect estimation to extem@gMss with
Regarding filtering, Luo et al. [38] proposed a filter fothe capability to support practical view updates.



3 PRELIMINARIES AND PROBLEM STATEMENT form of a probability distribution estimator. Sec. 4.1 @ets
This section presents the preliminaries and the problete-stdhe relationship between the Kullback-Leiblew) divergence

ment of this paper. of probability distribution estimation and the expecterbenf
We used to denote an application of an updageg, V/ = our side-effect estimation. First, not surprisinglye expected
u ® V denotes the view after updatifig with . side-effect estimation error is bounded by te divergence.

Syntax for view definition. We present our techniques with anSpecificaIIy,if the KL divergence of the probability distribution

important class of view definitions, namedglect projectand estimation tends to zero, the expected side-effect estimat

join queries (SPJ queries). We remark that any SPJ query ELFer tends_ to zero as well. Seco_nd_, in the context of updites
be converted into the following normal form in linear time: IS ot feasible 1o enumere_\te the |n-f|n|tely—many future u!efsla

V =ma(op(Ry > Ry... > Ry)), Sec. 4.2 presents a rewsgd notion of errors on a finite set
where A is the set of projection attributes of the view,is of updates. In the analysis, we do not consider alternate
the selection predicates arft}s are relations foi € {1,...n}. sequences of updates where errors depend on the choice of
Hence, the technical discussions of this paper assume thixlate sequence not detectors. For presentation singpiiet
normal form. We mostly focus on side-effect detection withresent our analysis with insertions, unless otherwiseifipe,
join queries, as they are the most technically challengiihgn as deletions are obviously bounded by the view.
we present exte_ns_ions to support prpjectioins.this paper, , 1 Analysis with KL Divergence
we assume the joins form a tree. Join trees are common_in ) ) o ) .
practice and can simplify our side-effect detection. Nétat t To describe the analysis of the estimation quality, we first

each relation inV can serve as the root of a join tree andec@ll the definition okL divergence L), which is used to
different join trees lead to different estimation accueaci measure the distance between the real and estimated wlistrib

tions. Let Pp(X) and Pr(X) be the real distribution and the
estimated distribution of @andom variableX, respectively.
Then, we have the following:

Source of view tuple. A view tuple t, can be decom-
posed inton segments ti,..., t,, where t; = ma,(t,)

and A; denotes the attributes of?; in V. We «call Pp(X)
Ui=1..n {t:; | t; is a segment of, andt; € R; } the source KL(Po®)|IPe (X)) = XEE:XPD(X)]Og Pp(X)

of ¢,. For example,{s, p3, 03, a1} is the source of the view  \we use random variable§ and J to capture possible
tuple v; in Fig. 1. We remark that in general; may not selections and joins on attributes of all possible vidven a
always exist in the source database. database instance We use a random variablel to denote
View update problem. The view update problem can bepossible insertions. (An insertion event €M is modeled
presented as followssiven a view definitioV of a relational as (S, .7), where S€S and Je€J.) For simplicity, we skip
database instancé, where the view is V(I), and an update projections in this analysis, as detectors can be extendtbd w
u on the viewV, find a translated update’ on I such that projections (detailed in Sec. 8). We remark that an insertio
u @ VI) = VI @ ). may involve attributes beside$ and J. The analysis of these
An updateu having a possible update translati@nis called attributes is trivial and hence omitted. Ligt| denote the size
atranslatable updateOtherwisey is called arnuntranslatable of view V' € V before an insertion and lef,...; (M, V) and
update Untranslatable view updates are untranslatable oftgn, (1, V) denote the real and estimated view sizes after an
because they lead to certain side effects [29]. We recall thgertion, respectively. We may omit andV when they are
definition of side effects as follows. clear from the context.
Side effects.Given an update: on a viewV = V(I) and its As discussed at the end of Sec. 3, a side-effect detector
translationu’ on I, side effectof «' are the changes on thehas two kinds of errors: false positivés_ and false negatives
updated viewW(I @ v’) that are not specified by. E_. Letd be a user-tunable parameter of acceptable estimation
Much previous work on view updates.g, [12]) involves errors, where 0< 6 < 1. The formal definitions oft. and
rejecting untranslatable view updates as early as possible- are given below.

proposed as an optimization of update translation. Definition 4.1: False positivest (M,V): Given an insertion
This paper proposes a side-effect detector, which may e o o viewV, E, (M,V) is defined as follows:

further tuned to be an efficient estimator. Our side-effect .

otoctor | oot i Eo(MV)=1,if frer=|V|+1 N fous> frea+9; and

detector has two types of errors. (i) False positives denote .

that the view updates do not lead to side effects but thé E(M,V)=0, otherwise. -
detector declares side effects and rejects the updafeBalse Definition 4.2: False negativesz_ (M,V): Given an insertion
negatives denote that the view updates cause side effects|inon a viewV, E_(M,V) is defined as follows:

fact but the detector declares no side effect. False pesitiv | E_(M\V)=1, if frew>|V|+1 and fos <|V|+1+6; and
are thetrue error of our view updater, whereas false negatives. E_(M,V)=0, otherwise. 0
are a performance issue as they will be detected in the update ’ ’

translation. False positives and false negatives will Hengg Ve remark that,. and £ are two binary random vari-
formally in the next section. ables. The expected error can be expressed as the integratio

of all possible insertion®1 on all possible views over their
4 QUALITY OF SIDE-EFFECT DETECTOR probability distribution P(M, VY:

This section presents the notion of errors used in our pexgpos X P (M — POV« B (MY
detector. A side-effect detector can be considered as aaspec (B4 (M, V) = MXE:MVZEV (M, V) x By (M, V).
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We highlight that a side-effect detector is not simply a
classical estimator of cardinalities. Classical works @ s Product Product Ply oP2 {P3 aP1 45416
lectivity estimation focus oroverall accuracies of estimated \
cardinalities. However, side-effect estimation requivagy/ an Oder  Agoncy N8 &N By Y
accurate estimation of cardinalities that signifieshbendary (a) Join tree Jsupplier (b) Database graph G
between the absence or presence of side effects s4 51
Example 4.1: To illustrate the main difference between side- Da D
effect estimation and cardinality estimation, we presend t
detectors, namely;,citerm @and Jorqer, ON @ simplified Q7 of 04 *as 02
TPC-H. While the details of these detectors are presented in (c) Embedding (d) Partial embedding

Sec. 10, they can now be understood as detectors using diffey. 3. |llustration of join tree, database graph, embed-
ent summaries of the result of Q7 and the source databaggg and partial embedding

We setd to 1. That is, a view insertion with side effects _ ) _ )
changes the view size by a number greater than or equal¥8 presgnt the _a.ttnbutes and insertions that are irreteiean
2. (An illustration of the experimental result of estimatis  the relative qualities of the detectors.

shown in Fig. 18 in Appendix B.) We tried 1800 insertioa8, (i) Suppose attributed is projected out. If|dom(A)| is
with side effects. We report that the error adrdinalities of  infinite, or |dom(A)| is finite but|adom(A)|<|dom(A)|, A is
Jlineitern Was 3.7 times smaller than that &f,.4.,-. In contrast, irrelevant to the qualities of detectors as an update @#iosl
a side-effect detector requires to distinguish (i) theritiges can always find a new value &f without causing side effects.

that change the view size by 1 and (i) those greater than &) on the other hand, ift is in a view definition, regardless of
The exact change in cardinalities that is larger than 1 is n@{ gomain. Ift,.A is new,t,.A does not cause side effects and
important. With this notion of errors, our experiment foung jrrelevant to the detector's quality. Otherwigg,A exists in
that Jiineitem €xhibited 79 incorrect side-effect estimationghe database and the number of its possible values is bounded
while J,q4.- did not produce any incorrect estimation. by |adom(A)|.

While false positives and false negatives of a side-effectgased on the observations above, in Definition 4.3, we for-
detector are defined with an error threshéldthe quality malize the effective insertions that affects detectorsiligjes.
of a detector still exhibits a close relationship with thke \we remark that Definition 4.3 is independent of any error
divergence. These are summarized in Propositions 4.1 @d fnetrics. Moreover, this notion of errors is useful in builgi

Proposition  4.1: When kL divergence of the symmaries for side-effect estimation/detection.
estimated distribution of insertions tends to 0, i.e

U700 V06 0 e xpet e prss il 5 Efectue orens  den (1) o
of the detector tends to 0, i@ X P(E. (M, V)) = 0. O the active domains of the attributes oh and -
Proof idea: We model the possible views and their updates * the domains of the attributes of finit’e domains in the
by random variables. The expected value of false positives® lati icinating i/
is expressed in terms of these variables. In the arithmelfi?le rr:v?stfgserrr)grrg?gegler][gcltor. is its error on/’
derivations, we apply the Markov’s inequality and Pins&er’ ‘
inequality to obtain a bound that consiststaf divergence. 5 JOIN CARDINALITY SUMMARY (JCARD)
Then, we can easily show that ms divergence tends to Z&I0, |y this section, we proposgain cardinality summaryJCar d)
o) QOe_s, the. expected .values. Please refer to the full afithme,, estimating side effectsicar d is specially designed for
derivations in Appendix A.1 _ joins since joins are technically challenging in SPJ vieRa.
Proposition  4.2:  When kL divergence of the jjysiration purposes, we presentar d with insertions, unless
estimated  distribution of insertions tends to 0, i.eptherwise specifiediCar d has two components. (i) The first
KL(Pp(M, V)|[Pg(M, V)) — 0, the expected false negativeg)ne is the summary of the dangling tuples of a database (
of the detector tends to 0, i.&@5X P(E_(M,V)) = 0. [ those do not currently form any view tuple). (i) The second
Proof idea: Similar to that of Proposition 4.1. one iscandidate tuplesaind they capture how close dangling
4.2 Revised Notion of Errors tuples may form view tuples, under random insertions. When

Propositions 4.1 and 4.2 show that it makes sense to cohsti@¥iew tuple is inserted, both components are used to estimat
a side-effect detector by m|n|m|z|ng theL divergence be- the Change Of the VieW Size. For Slmp|ICIty, in thIS SGC'[NNB,
tween the detector and the actual data. The unique problenffifume that the primary keys of the tuples are present in the
a side-effect detector is that tike divergences are defined onviews (.e., SJ views). We remove this assumption in Sec. 8.
all possible futureinsertions which can be infinitely-many. 5.1 Terminologies and Notations
However, therelative qualitiesof detectors only depend onWe first give the notations needed to pres&®ir d. Suppose
certain attributesof the database, and more importantly, ¢he viewV involves Ry,...,R, relations. We construct a join
finite setM’ of insertions. tree.Jy, as follows. Each relatio®; forms a node inJy;, also

Let ¢, denote the view tuple to-be-inserted andA denote denoted byR; as the meaning is often clear from the context.
the value ofA in t,. Let dom(A) and adom(A) denote the If there is a join betweerR; and R; in V, we create an edge
domain and active domain of attributé, respectively. Next, (R;, R;) in Jy. The join tree rooted aR; is denoted as/p, .
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Join trees of different roots may have different accuraaies 2
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side-effect estimation. )
We use aatabase graplt:(V, E) to represent the database

I. A nodet€V denotes a tuple in I and an edgét,t')eE 02

denotes that andt’ are joinable w. r. t). . (c) Summary of G~ (d) Candidate tuples
Fig. 5. lllustration of JCar d and candidate tuples

Example 5.1: Consider the view shown in Fig. 1. Fig. 3(a)
presents the join treég,,,ii., rooted atSuppl i er . Fig. 3(b)
shows the database graph

Next, we introduce the terminologies to discuss the tupl&efinition 5.3: Given a source databadeof a view V, the
summarized inJCar d. database graph obtained from the extended dangling tuples

Embeddings and partial embeddings.SupposesS is a set N I is called thenegative graphG:™. The database graph
of tuples inG where each tuple belongs to a distinct relatioRPtained from the source tuples of the viéwis called the

P2

‘P
1

Order

Similar to tuples in a database, the dangling and extended
dangling tuples may be represented by graphs.

in Jy,. If the tuples inS form a view tuple,S is calledan Source graphG:. O
embeddingof the join tree Jy,. Otherwise,S may forma Example 5.4: Fig. 4(a)-(b) show the source gragh™ and
partial embeddingof .J),, defined in Definition 5.1. the negative graplz— of the database graph in Fig. 3(b),
Definition 5.1: Given a set of tuples in a database grapfi  reéspectively. _ o

and a join tree/y,, S is a partial embeddingpf Jy,, if We remark thatG* contains all the embeddings @ and

G~ contains all the partial embeddings @ G* and G~

may be overlapping due to the extended dangling tuples but
GTUG™=G holds. G™ and G~ together are an exact repre-
sentation of the databade in the sense that any side effect
of updates ol can be determined from them. Obviously, the
sizes of GT and G~ is O(|I]), which can be too large for

efficient estimations. Therefore, we summarize them in the
Example 5.2: Continue with Example 5.1. Fig. 3(c) shows amext subsection.

embedding o/s.,piier @s the tuples are of different relationss 5 jcard Definition

and they form the view tuple; in Fig. 1. {s1,p2,02} ShOWN ;0,1 4 handlesG+ and G differently. G+ contains the

in Fig. 3(d) is a partial embedding. Howevef={p4, 04,02}  empeddings, which are the tuples of the view, and can be
is not a partial embedding a$ and s, form a view tuple. o5qjy maintained and indexed. Therefore, we focus on the
S’={pa, 02} is not a partial embedding as can be added t§’ summary ofG~ in this subsection.

and Conditions (i)-(iii) of Definition 5.1 are trugiss, ps,as}  The summarization ofi~ is derived from a notion ofoin

is also not a partial embedding as the tuples are not Jo'nabl%ardinality equivalencéetween nodes, denotedfas to, W.
Dangling tuples and extended dangling tuplesDangling r. t. a join treeJy,. To define the join cardinality equivalence,
tuples are the tuples that do not form an embedding. Dangling: first define the join cardinality of tuples.

tuples may become non-danglinge(, form view tuples) after pefinition 5.4: Given a join tree/p, (rooted atR; of V) and
an insertion. The estimation of side effects is more aceurg{ pegative graptG—, let ¢ be a tuple inR € V, the join

with not only dangling tuples but alsxtended dangling tuples cardinality of ¢, denoted as.jcard, is defined as follows.
(Definition 5.2). The intuition is that given an insertiomnse . ¢ R is a leaf relation inJg , £.j car d=1;

nglin les m me non-dangling and the exten . . ' ..
dangling tuples may become non-dangling and the exte d% Otherwise t.j car d=[Ip cp (C1iyca-wen (¢4 card)),

dangling tuples may cause additior_wal view tupl'ee,,_ side where® is the set of child relations oR in Jg,. O
effects. Thus, we summarize both kinds of tuples. Finally, w ‘

remark that extended dangling tuples may join with somerothe The intuition of ¢.j card is that we traverse the join tree

tuples and unlike dangling tuples, they may appear on the vie/r, bottom-up and join the relations visited, anglcard is

N . o . the number of intermediate join results containinghen the
Definition 5.2: Extended dangling tuplemprise (i) dangling bottom-up traversal reachds

tuples; and (ii) the tuples that can form, together with Son]fxample 5.5: Consider the negative graghi— in Fig. 4(b)

;jrzg%ling tuples, a partial embedding of any subtree of the joand the join tree/suppier in Fig. 3(a). Fig. 5(a) shows the
V.

join cardinalities of tuples inG—. Thej cards of the tuples
Example 5.3:In Fig. 3(b), po is an extended dangling tuplein Order and Agency are 1 by Definition 5.4(i). Tuples in
as it is a dangling tuple (Definition 5.2(i), is an extended Product andSuppl i er are the product of thecar ds of their
dangling tuple as it forms a partial embeddifigs, a2, ps}  child relations, respectively, by Definition 5.4(ii). Ingpiaular,
with the dangling tuples, andps; (Definition 5.2(ii)). p1.j card=1x0=0, whereo;.j card is 1 asp; joins with o;

() the tuples inS together with the tuples it¥ do not form
a view tuple;
(ii) each tuple inS belongs to a distinct relation;
(iii) the tuples inS are joinable; and
(iv) S is maximal,i.e., no tuple can be added ®and (i)-(iii)
are true. O



in Order; and0 is j card from Agency asp; does not join analyze summary graphae overload the notation&~ and
with any tuple inAgency. G to refer to the summaries, unless otherwise specified.

Definition 5.5: Given a join tree.Jp, (rooted atR; of V) Candidate view tuples.JCard summarizes tuples i~
and a negative grapi—, ; andt, arecardinality equivalent based on (join) cardinalities. Certainly, the cardinefitiare
(denoted as; ~ t,) if the following statements hold: directly relevant to the number of view tuples generatedfro
insertions. However, it does not consider hiikely dangling
tuples may form view tuples. Suppose view insertions are
random. The dangling tuples that form an embedding with just
are identical to those of. . fewer new Fuple segments will form view tuples easier t.han
other dangling tuples. ThereforéCar d’s second structure is

Sldg—eﬁect estimation u_smg?* IS gccurate due to the sets ofcandidate view tuplegach set o€andidate view tuples
following reason.JCard (G~) summarizes the tuples by the.

val | Al ial beddinasd is simply a set of tuples that forms a partial embedding to
equivaience classes. partial embeddingsan are com- o join tree. The rank of each tuple set is defined to be the

pactly represented by equivalence classes. Upon an lmer%umber of new tuple segments needed to form an embedding.

of a tuple, the tuple is joined with the equivalence Classisach individual candidate tuple will be split from its origi

gnd thle eSt'\T/ﬁt'onﬂ']s to detﬁrmme t:\eerage Jlomable tuplgs e%uivalence class and form an individual equivalence dfass
in a class. en the insertion produces a large or moderat by itself (.. no summarization).

number of new embeddings (side effects), the average count _ o ) ) )
is sufficient to signify the presence of side effects. Example 5.8: Continuing with Example 5.7, if we are given

a budget to take one candidate tuple set, we will sefe
Example 5.6:Fig. 5(b) shows the join cardinality equivalence ucg ! up we will sefsel

\ . S D2, 02} or {o4, ps, az} as they will form embeddings by
classes corresponding to the join cardinalities of tuphesvs y | Vel il
in Fig. 5(). We remark that even though and ps have - additional segment, respectively. Specificgiy, ., 02}

- needs a new segment afency joinable top, and {o4, ps,
the samej card 0, they are of different classes &% der g beney P2 {os, ps

. _ . . ; as} needs one o$uppl i er joinable tops;, whereas other two
is th_e _J(_)lnable _(_:_h||d relation op,, but that ofpg is Agency partial embeddings need two segments.
(Definition 5.5(iii)).

JCard structure and its construction. JCar d is a graph of 6 SIDE-EFFECT ESTIMATION WITH JCARD

supernodes, where each supernode represents an equivdigritiustrated in Example 4.1, traditional join cardinglisti-
class inG—. The Supernode of the equiva|ent class also mations may not be suitable for side-effect estimation ag th
denoted byc as the meaning is clear from the context. Aninimize overall errors on cardinalities. This sectiongenets
supernode is a binary tuplé&, c.est), where|c| is the number our side-effect estimation algorithm aQrCar d. Due to space
of tuples inc andc.est is the estimated averagear d of the limitations, an analysis of the causes of errors, which aksve
tuples inc. JCard is constructed by the rules below. the design issues dfCar d, is presented in Appendix D.

1) For each leaf relatio® in Jx,, create a supernode (an Our S|de—eﬁec§ est|mat|9n of .a_vlew.lnsertmpconsmts of
equivalence class) for all tuples iR, as all tuples ink two st.eps.+The flrst. s.tep is to _Jom with the source tuples
are cardinality equivalent, by Definition 5.5. of Vin G7. If the join resullt is not empty, then, forms

2) ConstructCar d bottom-up addltlonal view tuple(s)ife., S|de_ effects) and_hence_rej_ected.

Otherwise, the second step estimates the join cardindlity o
with the extended dangling tuples @ . This section focuses
on the second step as it is more technically involved.

Fig. 6 presents the overall estimation algorithm. The in-
puts ofesti mate_si de_ef f ect s are theJCard, the view
definition in the form of join treeJg, the view tuple
of joins between the tuples inand those i, where to-be-insertedt, and a paramete on the error thresh-

|E. .| will be used in estimation ' old. gstl mat e_si de_effects gstlmgtes the number of

Gel T ' new view tuples generated by insertiig. We recall that

Example 5.7: Fig. 5(c) presents théCard summary ofG™  estjmate_si de_effects declares a side-effect free inser-
in Fig. 4(b). Each node in Fig. 5(c) summarizes an equivalefign when the estimated number of new view tuples is smaller
class in Fig. 5(b).. In particular, the nodg (1,0) means that than 1 +6; otherwise, it declares side effects.
the clasﬁg contains one tuple and the average join card|r_1qllty The details okst i mat e_si de_ef f ect s can be described
of tuple incy is 0. |E. 2 |=1 means that there is one joingg follows. Given a view tuple, to-be-inserted, we decom-
betweenc), andc}. pose it inton segmentsty, ... ,t,, wheren is the number

There are two remarks ohCar d worth-noting. First, for of relations inJg, by deconpose_vi ew_t upl e in Line 01.
simplicity, Definition 5.5 defines the equivalence based dBach segment; corresponds to a relatioR; in Jg. t1,..., t,
identical count. In general, we may define an equivalenaggusiform at least an embedding ofi for a valid insertion. We
similar counts which leads to even smaller summary graphsipdatelCar d via updat e_equi v_cl ass for a more accurate
Our experiments show that by using Definition 5.5, we obtaestimation. In a nutshellupdat e_equi v_cl ass creates a
small summaries of our benchmark datasets and we do netv equivalence class "~ for each new segment. If;
further reduce the summary size. Second, since we alwaydsts inG~, we split¢; from its original equivalence class

() t; andt, are in the same relatioR;
(ii) t1.jcard =ty.jcard; and
(iii) the child relations ofR, in which ¢; has joinable tuples,

a) For each non-leaf nodR in Jg,, partition the tuples
in R by Definition 5.5;

b) For each equivalence class, create a supermoite
represent that class and add an edge’) if there
exists tuples irc that join with tuples inc¢’; and

c) Determine the weightE, /| of (¢,c¢’) as the number



Procedureest i mat e_si de_effects Supplier ¢

Supplier ¢} (O] @D
Input : view tuple to-be-inserted,, join tree Jr of view, s €5 St s

JCard G~ and error threshold ch [ b Gy b <} b p
Output: t r ue if it estimates side effectd;al se otherwise Product Product (L1) (@]
01cC =deconpose_vi ew_t upl e(t,, Jg) of NN SR

02 G~' =updat e_equi v_cl ass(Jgr, G, C) b ) o oy L

03 for each equivalence class of the root relationR of Jx Order (LMY e} (2D Agency  Order : Agency

04 propagate(c, G/, Jr) (a) without candidate tuples (b) with candidate tuples

05 let C to be the classes dR that form embeddings with, P : : ‘s f f

/llet a denote the number of embeddingsGh~ without ins. Fig. 8. lllustration of propagation of join cardinality

06 return (3_ cc(c-€St x[ef) -a > 1 +0) also denoted a8/, p’, 0, anda’, respectively, if it is clear from
Fig. 6. Procedure esti mate_side_effects the context. Since class is split fromc},, the size of}, is re-

Procedure pr opagat e duced by 1. Since’ is joinable withps in ¢}, we add an edge

Icr;put: anhequivalencg class JCar % Gf* arlwd join _treeJ}tz (a’,ck) into JCard and |Eq | = 1. Initially, o;.est and

Olufmj t el esft'ma;e .g_eragecar of tuples inc: c.€S a’.est are 1 as they are of leaf relations. Next, we estimate the

02 tetum eest =1 join cardinalit){ of intgnal n‘ode/s (Lirrg 11 (\)f Fig. 7). Foreawr-

03 else//supposer is of relation R’ in Jr 1 _co-estxX|BoL 1] anestXB 1l 00 1kl

04 for each child relation R of R’ in Jp ple, cp.est = EY OB % By P-=232 x 25-=0.5.

/et " denote a child of: in G~ Since the number of embeddings @&~ without insertion

05 for each ¢’s child ¢’ of R . . . .

06 if 1’ vi sited then propagat e( ¢, G, Jv) is 0, we finally obtain the 'est|mated number of new em-

07 ceSL.R' =Y of pr(c €St x|E, ,lc) beddings from the root relation a$.est x|cg|+s".est x|s/|

=0.5+1=1.5. This number is smaller than the real number

) because of the averaging @t.

Fig. 7. Procedure pr opagat e Fig. 8(b) is propagation with candidate tuples. The prop-

and update the edge weights Ifar d correspondingly. Due agation with candidate tuples is more accurate (Fig. 8(b)).

to space limitations, we present its details in Appendix C. Suppose we have one set of candidate tuglaspsz,o2} in
The essence of Procedupeopagat e is the propagation Fig. 5(d). We splits; and p, from ¢ and ¢}, respectively,

logic of estimation of counts (Line 04). Lines 05-06 simplyand construct an equivalent class for each of them (shown

sum up all the estimation counts of the classes that may form dashed blocks)p, keeps in the gray block as it is an

embedding(s) with,. insertion segment. After the splifcs| = 0, |cb| = 1,

Propagation of estimation counts.Procedurepr opagate |E.. .1|=1and|E.. ..|= 0. After the propagation, we ob-

is a recursive procedure that estimates the number of ntain the estimated number of new embeddings,asst x|s;|

view tuples by inserting the view tuple, (Fig. 7). The +s’.est x|s'|=1+1=2 and the side effect is detected.

recursion is simplepr opagat e traversess~ top-down from 7 DELETIONS AND REPLACEMENTS

the equivalence classes of the root relation/af (Line 06). 14 complete the discussion on updates, we present the suppor
The estimated count of a leaf equivalence class is 1 (Line Q2 yeletions and replacements willtar d.

and that of an internal class is computed by the formulas N Deletions
Lines 07 and 08. Specifically, given a classLine 07 sums |, this subsection, we exteritar d to support deletions. The

up the counts propagated from the equivalence classes ofi@ effect detection on SJ views usingard is exact and
child relation ofc. This formula assumes that the values of thths in PTIME [13], [14].

join attributes have the same probability in participatthe  Recall that+ captures all the source tuples of a view. We
join. Therefore, one tuple in obtains|E. | / |c[ of c.est  can ysert to determine the side effect of deletions as below.

08 return c.est = HCh”d R" of R in JR(CeSt .RN)

on average, where weighF. /| of the edge(c,¢’) in G~ 1) The detection uses the values of primary keys,irto
denotes the number of joinable pairs of tuples betweand locate its segments from the relationsGi;
¢’. Line 08 multiplies the counts from all child relations. 2) For each segment, if it occurs in multiple times, this

A restriction of JCard is that it assumes join trees, as  segment is not deletable;
propagation always terminates. In practice, acyclic jans  3) If all segments are not deletablg, is not translatable;
common,e.g, all TCP-H queries, except one, are acyclic [44]. Otherwise, we can delete any deletable segment as a
Example 6.1: Consider the view/ and the view updates translation oft,.
of inserting G5, FL, Ps, Cs, A4) as shown in Fig. 1. Fig. 8 If the deletion is side-effect free and translatable, we wil
illustrates the propagation logic on thear d of V (Fig. 5(c)). delete it fromG™* and update botit:* and G~
Fig. 8(a) is the propagation without candidate tuples. Tiag g 7.2 Replacements
boxes are the classes for the segments of the insertiothe The main idea of our technique to support replacements is to
dashed boxes are the classes split from existing classeandransform a replacement to a deletion followed by an inserti
dotted lines denote the join related to the insertion. (Tdhgee Subsequently, we can adopt our techniques of deletions and
weights that equal to 1 are omitted for presentation brgvityinsertions to support replacements. Our method is develope
Firstly, u» is decomposed into four segment$=(S;, FL) based on the following observation, which holds as the pyma
for Supplier, p'=(Ss, Ps) for Product, a’=(A4, Ps) for Kkeys of relations are present in the SJ views.
Agency ando,=(Cs, Fg) for Order, wheres’, p’ anda’ are Proposition 7.1: Given a replacement replacing to ¢/ on a
new segments ana, is an existing tuple. SJ view, the replacement is side-effect free, iff the deledf
In propagation without candidate tuples (Fig. 8(a)), wg, is side-effect free and the subsequent insertiotf, @$ also
construct an equivalent class for each segment. The classesside-effect free. O
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R A B View V=Rx ST L courselbook V' = Tname,dept,book (L >4 T >4 E) view update u: insert (jim,cs,B3)
r1 a1 | by view update u: replace (r1, s2,t2) to (73, s4,t5), where f' ml | By a feasible filling f: I'=(db,B3) t'=(db,cs) ¢’=(jim,db)
r2_az| by 73 = (a3, b2), t5 = (ds, ca) 20 | B 1
s Bl C T course| dept. I L cr [
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(a) base tables (b) G (c) G+ ) G~ (e) JCard  (f) JCard propagation

Fig. 9. lllustration of replacement Fig. 10. lllustration of projection

Since the side-effect detection of deletions is exact, the?) the filling satisfies the selection and joins of the view.
estimation error of replacement equals to that of the ifmgrt ~ Let s be a tuple segment of a relatidty which is a relation
and the replacement time is dominated by the insertion timi@. the view definition). The joins are on primary keys and
Example 7.1:Fig. 9 illustrates the main steps of replacemenforeign keys. Feasible fillings can be greedily determingd b
The view is a join of relations?, S and T (Fig. 9(a)), where the following rules:
the primary keys are underlined. Figs. 9(b)-(e) are theldeta Case 1.The projected attributel is part of the primary key
graphG, source grapli:+, negative graplt:—, JCar d before of R.
insertion, respectively. Fig. 9(f) shows the propagatiortie 1) Suppose there is some valué dom(A) that is not present
JCar d. Suppose we replace a view tuple that joinsry, s in R yet, we fill in s with the valuep. Note thatp is new and
andt, (shown in dashed lines in Fig. 9(c)) by another viewloes not have any existing joining tuples in other relations
tuple v, that joinsrs, s4 andt;, wherers andt; are new.  2) If no new primary key is available, we check the tuples

We first deleter; from G*. In its segmentsif., r1,s2 and in R that are consistent witk. The tuple in¢, with fewer
t2), only ¢, is deletable (shown by the circle in Fig. 9(c)) as ifoining neighbouring tuples (edges database grapld) is
just occurs once V. Hence, the deletion has no side effeckelected earlier.

Second, we insett, into V. Following the technique proposedCase 2.The projected attributel is part of the foreign key

in Sec. 6, we (i) find it does not join with any existing tupleeferencing to a relatio. We fill in the missing value of

in G and then (i) insert it intoG~. Fig. 9(f) shows that such that it has the fewest number of joining tuples.

the estimated number of new embeddings after insertion isFeasible fillings are generated one by one according to
cp-est +rz.est =2 and the side effect is detected. the above rules and are passed to the side-effect estimation
8 PROJECTION Furthermore, users may specify a boundn the number of

It has been known that if the view definitions involve projecieasible fillings passed to the side-effect estimationhvet
tions, their view update problems often become NP-compldtf@de-off on estimation accuracy.

[13], [14]. The main reason is that the attributes projecied 8.2 Extension of JCard and Its Algorithm

(a.k.a, the missing attributes) can be primary keys, foreigprojections are defined with set semantics, where duplicate
keys, orjoin attributes. This section presents an extensiflues are “removed”. Due to the cardinality equivalence of
of JCard to support views with projections. (We discusgcar d proposed in Sec. 5, tuples with different values may be
with insertions with missing join attributes as they are e0Mplaced in the same equivalence class. Subsequently, theest
technically involved.) First, we fill in the feasible valufes the  tion algorithm may over-estimate side effects. Therefore,
missing attributes. Among many feasible fillings, we pr@osgropose a refinement on the notion of cardinality equivaenc
a greedy methodo fill in values that may cause the fewesin addition to the conditions in Definition 5.5, we introduce
side effects. Second, the cardinality equivalence is ee@n g condition that; andt, arevalue-cardinalityequivalence if
with attribute values and the estimation algorithm is a#jds they are cardinality equivalent artley have the same values
accordingly to estimate side effects. on the projection attributed/Ve then construaxtended Car d

8.1 Filling in Missing Attributes by using value-cardinality equivalence

Due to projection, the tuple segments of a viéwertion  The estimation algorithm estinate_side_effects
contain missing (join) attributes which must be filled inigpr (Fig. 6) is adjusted to incorporate with thvlue-cardinality

to estimation of side effects. We call the tuple segmenth wigquivalence. Specifically, if the count of new embeddings is
the missing attributes filled in &lling. There is a spectrum larger than 1 +6, then the estimator declares side effects.
of approaches for determining a filling without side effect©therwise, the estimator declares no side effect. However,
For instance, one may directly employ a potentially costihe logic of the count propagation remains the same.

heuristic algorithm to determine a side-effect free fillieqd,  gyample 8.1:Consider a view on a database of three relations,
[12]. Another extreme is to fill in these attributes randomly, brary L, Teaching T andEnrol | nent E (Fig. 10(a)).

and estimate the side effects of the filling. This is repeatgg,o primary keys of the relations are underlined. Suppose
until a filling with zero side-effect estimate is obtainedtbe ot 1. .se refers toT.course and E.course also refers to
insertion is simply rejected. _In_ this s.u_bsection, We prepas - .....co The tuple to-be-inserted is (jim, i&). It can be
greedy approach for determining a filling. decomposed into segmerits(X, B), #'=(Y, ie) ande’=(jim,
Definition 8.1: A fl"lng is feasibleif the following holds: Z)' where X, Y and Z are the missing attributes to-be-filled
1) the filling does not violate integrity constraints and-refin. Suppose the domain df.course is simply {db, os, ai,
erential constraints of the source database; and ml}. A feasible filling f is: X=Y=Z=db. By usingf, ¢'=t4



Procedure candi dat e_t upl es

Input: join tree Jy,, negative graplz—, the number of
candidate sets, the join attributes4 of Jy,

Output: a set of candidate tuples

01 (tu, tv).capaci ty = oo, V (tu, tv) € G~.E

02 for each (ty, tv) € G~ .E

03 ift_ué€ Ry, t_v € Ry and Ry, Ry) € Jp.E

04 add ¢, ty) into G~

05 set €., ty).capaci ty = log(max_pr ob((t., tv)))
06 add a single sink and a single source to connect

the sink(s) and source(s) of,, respectively
07 add a sink and a source to connect the sink(s)

the source(s) oéachconnected subgraph i@~
08 set the capacity of the edges connecting to the sink or
the source to infinity

09C =0 andG’' =G~
10 while |C| < k and G’ # 0

/I initialization

10

approximation ratio of heuristics fonsc is trivially preserved
in such a simple reduction.

The msc problem has known to be an NP-complete
problem that greedy algorithms work well with reasonable
bounds. Hence, we propose a greedy algorithm, namely Pro-
cedure candi dat e_t upl es (shown in Fig. 11) which is
equivalent to a greedy algorithm mifSc, whose approximation
ratio is known to beoPT x lg(U).

We make two observations @mandi dat e_t upl es. Firstly,
we do not require completely reducing &TT instance to
an Msc instance incandi dat e_t upl es. Secondly, there are
admittedly many heuristics for thesc problem. We propose

11 g=nmax_fl ow(G")

12 G =extend(g)

13 C=Ccu{t|tegd, g €g}
14 foreachg’' € ¢ G' =G —
15return C

Procedurecandi dat e_t upl es in the style of a well-known
greedy algorithm for ease of analysis.

The main idea ofcandi dat e_t upl es is to convert the
negative graphG~ into a graph with a single source and
single sink (Lines 01-08). For the joinable tuples (edghs} t

and the number of joining tuples betwe&mand E is 1, ast, are not inG~, we introduce them inta=~. The capacity
joins with ¢’. The number of joining tuples betwe@hand .  of such an edge, denoted &s,,(.), is the logarithm of the
is 1, ast4 joins with ’. There are 2 joining tuples in total. If Probability of tuples with the join attribute values, whewe
X=Y=Z=ai, the number of joining tuples is 4; 3 for ml; and@ssume the values in the domain exhiniiform probability
4 for os. Hence, the greedy algorithm analyzefirst. A subtle point is that the tuple segmentsGit, by definition,
Fig. 10(b) shows th&~ and the join cardinalities extendeddo not form an embedding (a view tuple). We simply apply
with values. Fig. 10(c) shows the extendedard before & maximum flow from the source to the sink (Line 11). The
insertion and the propagation on th€ard is illustrated in flow is the sum of logarithm of probabilities, which is simply
Fig. 10(d). propagat e estimates that the view size afteProportional to the product of probabilities. This is ecuent
inserting the filled tuples and returns 1 new embedding. Hend0 picking the tuple segments that are most probable to form
the insertion has no side effect. a view tuple. Minor details include (|) extending the path
Remark. For de|eti0nsy we use |ineage techr‘"qm( [16]' of maximum flow into a partial embedding, which is one
[23]) as a blackbox. We compute the lineage of the view tupket of candidate tuples (Line 12) and iteratively selectime
to-be-deleted and then applygar d to detect the side effects.embeddings from the negative graph uritiembeddings are
selected (Lines 10-14), whefeis a user-defined parameter.
9 OPTIMIZATION PROBLEMS IN JCARD

_ o _ The complexity ofcandi dat e_t upl es is simply the com-
There are two important optimization problems in the comsiexity of maximum flow multiplied byik.

struction ofJCard. In Sec. 9.1, we show that selecting the

candidate tuples ofCar d for accurate side-effect estimation9.2 Optimal Join Tree Selection

is equivalent to Minimum Set Coveméc) and illustrate how The join cardinality summaryCard G~ defined by Sec. 5
approximation algorithms fomsc can be adopted to solveassumes a particular join treg, of a given view definition
the selection problem. In Sec. 9.2, we address the selection denoted asG'—(.Jy). However, givenV, there are|)|

of the representation of join trees, which is a crucial infaut join tree alternatives, whose accuracies may differ fromhea
side-effect estimation. other. In this section, we present a selection algorithrat, ith

an adoption of simple sampling technique, to determine the
pptimal join treeJ{jpt with respect to its error produced by
the estimation algorithnpr opagat e.

Definition 9.1:(Selecti ¢ Candidate Tuples (SCTVGi A naive method to select an optimal join trées( with the
efinition 9.1:(Selection of Candidate Tuples (SCT)Given smallest error) is to enumerate all possible insertionsoof |

a space budgel, a SPJ viewy and theG™ summary of the oo Given ajcard of a join treeG—(Jy), one may deter-

source dgtabgse, select a set of candidate to minimize S'Hﬁﬁe the set\/ of possible insertions by Definition 4.3. Given
effect estimation errors qir opagat e. a particular insertionn € M, its error can be determined
Theorem 9.1: SCT is NP-complete. by calling pr opagat e with G~ (.Jy)) and m and comparing
Next, we present a reduction from &tT instance to an the result with a side-effect detection. However, deteimngn
MSC instance. For each possible insertion we create an the true error ofGG(.Jy,) requires callingpr opagat e with all
elementw in the universel/. For the tuples; for selection, permutations of\/.
we create a claus€;. For eachs, whose selection leads to We propose to simplify the computation on errors of join
the insertiong/ accurate, we ensure thate C;, whereu € Y. trees for practical solutions. We make two assumptions en th
With such a reduction, it is straightforward that the optimgroblem. First, we assume that insertions are equally [meba
solution of themsc instance from this reduction is the optimalSecond, each insertion is independent. With these assumspti
solution for thescT problem as well. Most importantly, thewe can estimate the proportion of falsely estimated inesti

g/

Fig. 11. Procedure candi dat e_t upl es

9.1 Candidate Tuples Selection

To begin with, we formalize the problem of selection o
candidate tuples and investigate its hardness.
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TABLE 2 1 ’ e
Characteristics of datasets o 08 o
# of | max table | avg. table | avg. fan- PR - 2
tables | size size out of G H H
TPC-H 200M 6 1’200'000 288’671 13175 ;;044 I (random update, update w. small s. e.) ;; (random update, update w. smalls.e) -
200M 6 2,400,000 | 577,338 | 262.81 Eon | o oo £ o2 | o Bosesoon
600 6 3,600,000 | 866,005 | 393.86 e B 20 T a0
800M 6 4,800,000 | 1,154,671 [ 524.98 % oz o4 05 o8 1 %0 oz o4 os o8 1
1G 6 6,000,000 1,443y338 659.06 False positive rate False positive rate
DBLP 6 245888 | 73,489 432 (a) ROC of JCar d (tpc-H) (b) ROC of JCar d (pBLP)
SYNTHETICDB || 6 30,000 18,000 2.03 Fig. 12. ROC curves of JCard on TPC-H and DBLP
. ; . R 25 T — T < 3 T — =
by using sampling. The sample size can be determined by | ~= &yt | . |55 Ko mei s
. . . . . . [ o EDS S0 2 |ai EDS
estimation of proportionin a nutshell, without information e | - .
about future insertions, we may exploit the maximum varanc sl _ 25l
of samples to estimate the true eribhe classical resultis that =~ < | P I
the error bound can be determined4y 0.25/|S|, whereS'is , e 0s
a sampleFor example, the error bound is 5% when the sample 2«0 o0 oo 000 0
size is 400. Furthermore, if the relative accuracies betvjgia (&) Average time tpc-H) (b) Average time gBLP)
trees cannot be distinguished due to errors of samplinge mérd- 13. Comparison with EDS on TPC-H and DBLP
insertions can always be sampled. similar results (detallgd in Appen_d|x E). We use the view on
Finally, the details with deletions are similar and delesio the full TPC-H to obtain possible insertions.
are always bounded by the view size. RegardingpBLP, we generated a set of views randomly. The
last query in Fig. 20 shows the view template. We also use
10 EXPERIMENTAL EVALUATION the view on the fullbBLP [40] to obtain possible insertions.

This section presents a comprehensive experimental digriua (€9arding SYNTHETICDB, we use the query joining all

that verifies the efficiency and effectiveness of our techedy [@PleS as our view. The insertions were generated by the
E . | . W . P Cgenerator with the same parameters.
xperimental settings. We ran our experiments on a In this experiment, we analyze the performance of our

W‘”‘l a Quaq-core 2'4G.HZ C.Pléilinnin.g UKJ/IUnStu 615'014'T?]Lféchniques OIFP, FN and the estimation time, respectiveée
imp _ementat|on Wafs erttecn: n » using MySQ I. soo?eported performances are averaged performances on 1,000
maximum memory for our C++ program was set to only I\Oiew updatesWe often plot the performances of variojmn

bytes. In this experiment, the memary representation of tIﬂ%es(though they may be overlapping) to show our technique
largest test dataset could not fit into 500M byte memony - obust against join trees selection

Moreover, our algorithms are independent of graph storage _
which is a research topic in and of itself. xperiment A: ROC curve of JCard.

. . Figs. 12(a)-(b) show the ROC curves d€ard on TPC-
Benchmark datasetsWe use two publicly ayallable dataset§_| and DBLP, respectively. To illustrate the performances of
TPC-H [44] and_ DBLP [40], and one synthetic datagetm- JCar d in various scenarios, we generate artificial updates that
THETICDB that is implemented by ourselves. There is no da

ling tuple | d H doml | Rave tiny side effects, which are hard to estimate, mixed
glgg tUpitmTIPC'fH anthD.BLP'I t_ence, we ratr_1 ?mé;gl?p Cwith random updates. Th@Card has no candidate tuple.
SUDSELS ol tples Irom Iheir re;ations, respectively, ta € Fig. 12(a) shows the ROC curves and verifies that our side-
benchmark datasets. Regardingc-H, we sampled five test

? -~ effect estimation performs very well. For instance, the AbfC
datasets fronTPc-H of scaling factor 4.0. They are of the size b y

Jcard is 0.74 kloads witB0% hard updates. From th
200M, 400M, 600M, 800M and 1G, respectively. We use tl-}?EJ rats on workloads witB0% hard updates. From the

. 4 ure, as expected, the fewer the hard updates, the larger th
1G dataset by default, unless otherwise specified. Regard C. We observe similar results fromeLp (see Fig. 12(b)).
DBLP, we sampled half tuples from the fubbsLpP [40] as

test dataset. R di h or | We remark that the hard updates are carefully generated by
our test dataset. RegardirgyNTHETICDB, the generalor IS examining the joining tuples from the datasets, which are ra

‘“T‘ab'e with four_ param(.at.ers:.rela.tion humber, relaticre si if all updates are considered equally probable. Hence, wesfo
primary and foreign key join directiore(g, R;.F K referred on random updates in the remaining experiments.

to Ry.PK denoted a join fromRk, to R;) and the maximum ) _ ) )
tuple fan-out €.g, fan-out of a tuple inR, is the number of EXPeriment B: Comparison with EDS

tuples inR; joinable with it). Some characteristics of the three N€xt, we compare the performances tard with our
datasets are reported in Table 2. implementation of the latest related waeb s technique [20].

E i Let M be th tofi " tested. D tSince EDS does not produce errors, we report its runtime in
rror metrics. 1€ € e set ol Insertions tested. Denotg ;e experiment. For a fair comparison, we report the ruatim

S and S be the real-positive and real-negative insertion& an exactiCard (i.e, no tuple is summarized). In addition,

in M, respectlvely.. In this expgrlmgnt, we Seti| = [S-|. we observe that théCar d summarizing 90% tuples can still
Let Ay . be the estln?ate'd pogltlve lnsert|ons$1 and A_ comfortably attain no error. Hence, we report the runtime
the e§t|mated neg&tl\fe insertions $0.. e define the‘:Afallse of such aJcCard, as a reference. Figs. 13(a)-(b) present the
negative £N) to beﬁ and the false positiver€) to be\le' runtime onTPC-H andDBLP, respectively. In Fig. 13(a), the-
Query workload. RegardingTPc-H, the view is a simplified and y-axes are the dataset size and the runtime, respectively.
Q7 in TPC-H [44]. For illustration purposes, we focus on thdrom Fig. 13(a), we note that the exabCard is already

joins in Q7. We testedall join queries in [44] and obtained at least one order of magnitude faster thans and the
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and the estimation time dfCar ds summarizind — 2% tuples.
The average detection time aPC-H, DBLP and SYNTHET
ICDB is about 3s, 0.18s and 60ms, respectively. Their average
) S estimation time is reported in Figs. 15(a)-(c), respedttive
O(e) n{ﬁcgnfdggu%lg:i% ° 0 :N o?;ﬁtéfﬁl‘iaég‘y“&'?,%ﬁ‘i[,a; Figs. 15(a)-(c) show that our estimation is much faster then
Fig. 14. Side-effect estimation error of JCard detection. In pgrtlcular, OmPCH, when 6% candldgte typlqs
are selectedsp is zero (Fig. 14(a)), but the estimation time is
performance gap increases as the dataset size increasesali@it 700ms (Fig. 15(a)), which is about 4 times smaller than
observe similar results in Fig. 13(b). the detection time. This is because thatdi@ar d summarizes
A possible reason is thaps is designed for th&m. views, about 90% non-candidate tuples in equivalence classeshwhi
whose advantages cannot be fully observed from relatiorg&n clearly save the propagation time of join cardinalitiée
views. More specifically, irEDS, the values of EDS attributesobserve similar results onBLP (Fig. 14(b) and Fig. 15(b))
of tuples can be updated without causing any side effect. And SYNTHETICDB (Fig. 14(c) and Fig. 15(c)).
attribute is EDS if (1) its values do not appear in kel view Moreover, the estimation time increases roughly linearly
(i.e., the attribute is projected out); or (Il) its values appear iwith the percentage of candidate tuples selected. The &5lop
the view only once and they are not accessed elsewhergsimbout 80ms, 5Sms and 2ms per 1% candidate tuples selected
the XML view definition. XML uses subtrees to naturally modebn TPC-H, DBLP and SYNTHETICDB, respectively.
one-to-many relationships such as the relationship betwescalability test. We tested the scalability of thecar d using
Per son and| nProceedi ngs in DBLP. In contrast, when tpc-. In this experiment, we tune thicar d to be error free
encoded in relational views, both person and proceediggd focus on its estimation time. Specifically, we select 10%
entities appear multiple times in the views. Due to Conditiocandidate tuples and sét= 0.4. (From Figs. 14(a) and (d),
(I1), most (if not all) attributes of the relational viewseanot e note that thelCar d is error free at such a setting.) The
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EDS. As a result, costly update analysis is needed. result is reported in Fig. 15(d). From Fig. 15(d), we observe
From Figs. 13(a)-(b), we also note that thear d summa- that the join trees have similar estimation time and the gnow

rizing 90% tuples is even faster. of time is almost linear as the dataset size increases. Hawev

Experiment C: Overall performance of JCard it is always much faster than the detection time as discussed

Estimation error. We select:% candidate tuples and study thGExperiment D: Optimizations on JCard

estimation error ofiCar d. We use the three datasets and set |n this experiment, we focus omPc-H as other datasets
6=0.4. Fig. 14 reports the result. Figs. 14(a)-(c) shews (.e.,  exhibit similar performance characteristics.

the real error ofi Car d). Figs. 14(a)-(c) show that the selectiorgffectiveness of equivalence classeBrevious experiments

of candidate tuples is effective in reducing the estimadoor. verify the importance of candidate tuples and this expemime
In particular,FP reduces as SeleCting more candidate tupl%ows the importance of equivalence C|assesy by Sk|pp|ng
After a certain small percentage.g, 6% in Fig. 14(a), 10% them. Fig. 16(a) reports the result. Consistent with themest

in Fig. 14(b) and 2% in Fig. 14(c)}P approaches to zero. tion with equivalence classes (Fig. 14(d)), the error reduas

We observe similar results @i\ in Figs. 14(d)-(f). we select more candidate tuples. However, when comparing

In addition, we observe that if the optimal join tree is usegjq 14(d) and Fig. 16(a), we note that the equivalence
even no candidate tuple is selected, the estimation errordgsses sometimes offer more than an order of magnitudes
JCard can be zero as shown in Figs. 14(b), (d) and (€).  improvement on accuracies.

Finally, this experiment verifies that the accuracies@rd  Thjs experiment can be modified to show the effectiveness
of different join trees are different, which is more notable ot candidate tuple selection. Fig. 16(a) further shows that
SYNTHETICDB as shown in Figs. 14(c) and (f). candidate tuple selection outperforms a random method. In
Detection time vs. estimation time.We then compare the particular, whenl0% candidate tuples are selected, euris
detection time of an exadiCar d (i.e., no tuple is summarized) close to zero. Wher=9%, our FN is 3%, whereas that of the
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Fig. 16. Effectiveness of optimizations on TPC-H el — EEEE | | L =
random method is 75%. Fig. 16(a) does not stemvas FP £ o) e°f T
does not occur when equivalence classes are skipped. 5 ool is L o
Candidate tuple selection.To show the effectiveness of our  © ,,,| ) i
candidate tuple selection approach, we comparenss (the ol L, I : ‘
real error) with the=pPs of a random approach. Both approaches ° ootcumddaeuphssoeced oot candeite lesseleved
use equivalence classes. Fig. 16(b) shows that our teahniqu (% FPof del. GYNTHETICOS) ofJLIns, time EYNTHETICOR)
significantly outperforms the random approach. In paréicul w0} ] 0s e e ]
whenz = 2%, our Fp is zero, whereasp of the latter is 0.29.  §  :| % bestaminion | £ o "7 aontinlifio i
We obtained similar comparison results faxs. s w /“,"L"llf—m[-z”/ I
Join tree selection.We then tested the sampling-based join ooLE i LEX S -

tree selection technique presented in Sec. 9. Sirces the P TN °c 2z 4 & 8 10
real error pr C_:ar d, We p.rese_nt the accumu_latEd' Of_]-'OOO (e) Del. and nﬁ;ggggmtei%pg(:(eﬁﬁEﬂcos) (0] FeasignlgCﬁ?ﬁﬁzeslug\e(sr\ﬁ?grl(:DB)
real-negative insertions in Fig. 16(c). In this experimem¢ Fig. 17. Estimation time of replacements and perfor-
select no candidate tuple and get 0.4. First, with reference mance results of JCar d on views with projection

o Fig. 14(a), we note that our sampling technique prOducedating counts. Fig. 17(d) also shows the estimation time of

. .. . .al
the optimal join trees. Second, we note that the estimati ﬁa : ; ) .
P J 9%r ds on views having four and five relations. As expected,

error (.:onverges qmc_kly,e., after 700 sample insertions. the estimation time increases rapidly as the number ofioalkst
Experiment E: Deletions and replacements. increased. Importantly, the side-effect estimation tinaes
In this experiment, we tested the performance of the SUppgfénificantly smaller than the translation time.
of deletions and replacements as reported in Fig. 17(a)ceSin Further, we illustrate a simple performance breakdown of
the error of replacements is identical to that of insertita® ota| deletion time. (We do not show view insertions as they a
discussed in Sec. 7), we focused on the estimation time h&fg; supported by lineage.) We set the view with four tables
We selected 10% candidate tuples. Fig. 17(a) shows that {§¢ simplicity and vary the percentage of candidate tuples.
time overhead of deletions is t|n§e.g,_14.3ms for the dataset,:ig. 17(e) shows that deletions always take less than Q5s. |
of 1G bytes); and the replacement time is almost the samegjition, the lineage computation accounts for a smaltifsac
the insertion time (Fig. 13(a)). of the total time €.g, 6% of total time whenz = 10%).
Experiment F: Projections [16], [23] are capable of exact view deletions. Deletion
Next, we show the results on views with projections. Wganslation time dominated the time of lineage computation
use ONSYNTHETICDB as it is easier to control. We project[16] or retrieval [23]. Fig. 17(e) reports their time (2488
out some attributes of relations randomly, where the pymaf16] and 24.2s for [23]). It is clear thdtCar d is significantly
keys and the join attributes may be projected out. As rentbrkgnore efficient. Even whem: = 100% (where no tuple is
in Sec 8, when needed, we adopt lineage technigug [16], summarized and no error is produced bar d), JCard is
[23]) as a blackbox to trace the tuples to-be-updated. about two orders of magnitude faster than [16] and [23].

Estimation error. To study the performances of incorporatingreasible filling. Finally, we compare our greedy approach with
lineage technique intdCar d, we vary the number of relationsa random filling approach as shown in Fig. 17(f). We also
of views. Figs. 17(b)-(c) presenps of insertions and deletionsshow Fp of enumerating all possible fillings, as a reference.
of our extended Car d, respectively. Figs. 17(b)-(c) show thatFig. 17(f) shows that when the number of feasible fillings
with more joins Fpincreases rapidly, as it is harder to estimatg fixed .9, k=5 or k=10), our approach is clearly more
join cardinalities accurately with more joins [28]. Howeve accurate than the random approach.

Fps are well controlled under 6%. There is AR due to the 11  CONCLUSIONS

set semantics of projections. In this paper, we proposed a data-oriented approach togovi
Estimation time and lineage computation time.Figs. 17(d)- practical support for the view update problem. Specifically

(e) report the estimation time ofCar ds with 2% candidate tu- proposed a side-effect detector for SPJ views that estimate
ples on insertions and deletions, respectively. From Figd)l or detects whether a view update causes side effects and
we observe that the estimation on views with projectionssakrejects untranslatable updates early, in turn avoidinghcos
longer time than that without projections (Fig. 15(c)). Foupdate translations. The core of the detector was a novel
example, when the views contains six relations ang- 0, structure — the update filter. In this paper, the update fitter
JcCar ds for views without projections are roughly 300 times join cardinality summaryCar d that consists of structures
faster than those with projections. It is not surprisingehese that summarize (extended) dangling tuples and the source of
propagating tuple values is more time-consuming than progew tuples.JCard is derived from a notion of cardinality
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APPENDIX A
PROOFS

In this appendix, we provide the proofs of all propositionsl a
theorems in the paper.

A.1 Proof of Proposition 4.1

the
i.e

Proposition  4.1:  When
estimated distribution of

KL divergence of
insertions tends to O,

KL(Pp(M,V||Pr(M,V)) — 0, the expected false positives

of the detector tends to 0, i.eXP(E(M,V)) — 0. O

Proof: Recall thatM and V are the random variables
of insertions and views, respectively; is the user-defined
parameter in the definition of false positives. L&Y be the
size of a viewV € V before an insertion. LeC'P(M,V)
denote the Cartesian product of relations involved in tlesvvi

V' after the insertionM € M. Then, the expected number of

false positives is:

EX P(E4 (M, V)
Zvev ZIMEM P(M,V) x E4(M,V)

Sver P(FeatMLV) 2 VI 4140, frear(M, V) = V] +1)

< Sver P(fest ML V) = frear(M,V) > 0)
< Syey P(Ifeet M V) = frea (M, V)] 2 6)
EXP est M,V - ‘Tea M7V
0
vev
by Markov's inequality
_ Z Z]uEMP(M)X}fest(MaV)7f7~eal(va)|
vev o
< Z Z]uemlfest(]\lv V) 7freal(]w, V)!
- 0
vev
_ {fest(M7V)_f7'eu.l(M;V)‘
vVevMeM o
S [|ICP(M, V)| x Pe(M,V) — |CP(M,V)| x Pp(M,V)|
VeV MeM 0
similar to Getoor et al. [22]
- Ty |CP(M, V)| X |Pg(M,V) — Pp(M,V)]
VevMeM ‘ 0 |
Pg(M,V)— Pp(M,V)
<
SN ED D> -
vevMeM
where|C P| = max{|CP(M,V)|}
P
< O ko v)1Psea )

by Pinsker’s inequality

Therefore the expected error is boundedxaydivergence.
(]
A.2 Proof of Proposition 4.2

Proposition  4.2: When kL divergence of the
estimated distribution of insertions tends to 0, i.e

15

EXP(E_(M,V))
Zvev Z]\leM P(M,V) x E_(M,V)

Sver P(fert ML V) < IVI+ 140, frea (M, V) 2 |V] +2)

< Svev P(frearM, V) = oo (M, V) > 1-0)
< Sver P([freat®,v) = foor(, V)| > 1-0)
< S EXP(}f,ml(rvilffe)—fest<M,V)|) ’
by Markov’s inequality
" Z > e POM) | freat (M, V) = fese (M, V)|
vev 1-6
S Z Z}\/]QMI|f7‘eal(M7V)_fest(Z\/jyv)‘
1 1-6
vev
| Freat (M, V) = fest (M, V)]
VevMeM 1-0
- Yy ||CP(M,V)| x Pg(M,V)— |[CP(M,V)| x Pp(M,V)]|
VevMeM 1-9
similar to Getoor et al. [22]
- T3 |CP(M, V)| x |Pg(M,V) = Pp(M, V)]
VevMeM } 1-9 |
Pg(M,V) — Pp(M,V)
< cP
S IOPIx 3 > =
vevMeM
where|C P| = max{|CP(M,V)|}
cP
< ICP| x KL(Pp(M,V)||Pg(M,V))

1-0

by Pinsker’s inequality

Similar to the derivation of Proposition 4.1, the total nienb
of false negatives and the expected error (false negatares)

bounded bykL divergence. O
A.3 Proof of Theorem 9.1
Theorem 9.1: SCT is NP-complete. O

Proof: We establish the hardness €T by a reduction
from MINIMUM SET COVER (MSC).

We first recall the definition ofasc: Given a universé/
and a setS of subsets ot/, we want to find a subset of S
such that (i)|C| < B; (ii) the maximum number of elements
in U is covered.

Given an instance afisc, we construct an instance etT
that contains the scenario shown in Fig. 19(b).

The instance o6CT contains four parts. (i) We use possible
insertions to encode the univergé (i) We use selection
predicates to define possible insertions to be exatlgii) A
relation R; is used to encode a subggt € S of Msc. (iv) A
segments] of a view tuple to-be-inserted that already exists
in G~ (R;) is used to encode an elemantin C;. ThescT
instance is encoding by composing such segmengsinn a
special way. Next, we elaborate the four parts below.

For simplicity, we refer the domain of a relation to denote
the domain of the join attribute of the relatioand the discus-
sion always focuses on join attributes only, unless spekifie
(ii).

(i) For eachu; in U, we define a view insertion, denoted as

KL(Pp(M,V)||[Pg(M,V)) — 0, the expected false negatives

of the detector tends to 0, i.e X P(E_(M,V)) — 0.

Proof: The total number of false negatives is:

O

(i) To ensure thatt;’s are the only possible insertions, we
introduce the following selection clauses. Specifically,dach
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Fig. 18. (a) Real view size change after insertion; (b) estimated view size change after insertion due to J;,citem; and
(c) estimated view size change after insertion due to J,,ger

insertiont;: (s}, s2, ... s™), we include a selection in the viewafter thez-th insertion on the view. Each dot represents one
definition, o;: Ay = s} A Az = s? A ... A A, = s, where insertion. Due to space constraint, it is not possible tavder
A;’s are simply attributes of;’s. the exact numbers from the figure. However, we highlight
(iii) Suppose thevsc instance containg: subsets, we createth® change of 2, which indicates the boundary between the
m relations. Each relatiof; encodes a subsét; of themsc Presence and absence of the side effect. For example, a dot

instance. The join of the view definition &8, > Ry b ... b with a y-value 14 means that the corresponding insertion
R,,. causes 14 new tuples and therefore has side effects.

(iv) This part encodes the membership of an elemerin a The estimated counts of the change of the view size reported
P P me by Jiineitern and Jyq, after the insertions are shown on the

subsetC;. Denote that; is composed by segments of tuples”_ . . . . .
(sL, 52, . 5], ...). We can construct thé~ graph such that y-axis of Fig. 18(b) and Fig. 18(c), respectively. Althouglsi

8 ” O and (ivid s exists inC:— but not i not possible to derive the overall errors from the figures, we
(a/") i |s_fneW| gf gM jan ('\;'”) 5 ?X'Sjs_ In e du' NOLIN renort that the errors ofardinality estimation of Jineitem
the view,if u; € C;. Moreover, for (iv.ii),s; is placed in some o0 37 times smaller than those Of-qer- The figures

large equivalence class; and the class contains one &iple gh,ye that the distribution of dots of Fig. 18(a) was cldser

. . . . i+1 i—
joinable with some neighbouring tuples.g, s; "~ ands; . that of Fig. 18(b) than that of Fig. 18(c). However, regagdin

This forms the scenario in Fig. 19(b). Then we can always S§}je_effect estimation, it is important fo,cizem andJorder
a threshold) such that the estimation always report zero sidg ostimate the number of side-effect free insertions

effect for ¢;. Suppose’’; = {u;,, wiy, ..., ui, }, We makes’  yoiq that have a value below 2. In Fig. 18(b), the number
=s)/=sl/=..= Sz;k/' Finally, to ensure that’’ is selected f incorrect estimations ofnesem Was 79. In comparison,
byv our greedy algorithm, we add dummy tuplBs ;.t. s U Fig. 18(c) showed thaf,,., did not estimate any side-effect
D’ misses only one tuple to form a full embedding. free insertions. Therefore/,,q., was a perfect side-effect

The error caused by Case (iv.ii) can be avoided by selectiggimator, with respect to the 1800 insertions.
the existing segmentd.€., candidate tuples) frontz— and

determine those side effects with them separately. Sbe
problem is now to selec3 candidate tuples to reduce th
most errors. Suppose that we selectétl from G~. When

PPENDIX C
DETAILS OF PROCEDURE updat e_equi v_cl ass

either of the insertions,,, t;,, ..., t;, are encountered, theln this appendix, we present the details of Procedure
estimation algorithm will locate the additional path forgy update_equi v_cl ass (Line 02 of Fig. 6).
s/’ leads to a count at least 2. updat e_equi v_cl ass essentially splits the equivalence

Therefore, thescT problem determines the least number oflasses ofJCard for higher estimation accuracies. (We
s7"’s to be selected fron;— which estimates the insertionsomit its pseudo-code since it involves tedious details on
t;'s the most accurate with the budg®t It is straightforward manipulating nodes and edges.)
that the selected’’s are the subsetS;’s to-be-selected of the  SupposeC is the the segments of the view tuplg to-be-
MSC problem. 0 updated, we make andividual equivalence class, for each
segment in C. C will form at leastone embedding due to
¢sS. If the segment; exists (.e, ts isin R; of G7), we split

t, from its original equivalence class and form an individual
EXPERIMENTS WITH SIDE-EFFECT ESTIMATION classcg, like in Example 6.1. On the other hand.tif is new,

AND CLASSICAL CARDINALITY ESTIMATION we create a new equivalence clasdor ¢,. Since it is certain

This appendix provides supplementary information for tke ethat ¢, is directly relevant to the update, haviag specially
periment discussed in Example 4.1 of Sec. 4. The experiméoit ¢, improves the accuracy qir opagat e. To update the
tested the estimation of two estimators, namély,....., and weights of edges related ta, as they are required by the
Jorder, ON the simplified Q7 ofrPcH. We generated 1800 formula in Line 07 ofpr opagat e, we perform a local join
random insertionsall with side effectsThe threshold for side- betweent, and the neighbouring relations & in Jy,...

effect errorsf was 1. Fig. 18(a) shows the actual change of This update of equivalence classes often needs. relatively
the size i.e., the number of tuples) of the view on theaxis little computation in practice. Firstly, the existing segmis

APPENDIX B
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R c}gE\gésg_Ri%’ Rer[**]@r] RIS empeddings as before. The tuple segmentstaré, and ¢,

b A 7 b AV 1y s _ck . cs cgl 1y wheret; is new andty andt; are old.t; joins with ¢, and¢
S o225 seDBIS|@] s * %8| seDEos|@y Lh ; 2 3 1 s s
[*at:] 8l s{eD[EOSG LLUES .“ (2 0]E0.55)(ED in turn joins withts. Procedurepr opagat e returns 1 + 1x

2.1 i1 i .
Teb T ch{(3,D][mD) TC#& % T ABEED) |Ec, c.|x 1/ |es|. The estimator returns false negative when

a.1) equiv. classes a.2 agati b.1 iv. classes (b.2 ti
O e DRy (0 pay, chasses (02) propesetioneal /B e| > 116, .
(a) false positive (b) false negative Discussions.Fig. 19(a) illustrates how the join cardinality

Fkig.f 1|9- llustration of reasons of (a) false positives; and g gyer-estimated due to the summarization of tuples, which
(b) false negatives causes false positives. The join cardinality is over-estid in

of a view tuple to-be-inserted are directly retrieved frame t Fig. 19(a) as, ands; are placed in the same equivalence class

) 2 e Pos . aietint
Jcar d. Secondly, its new segments are locally joined with th bIUt they r::anr:ot join erlth* H_Assumr:ng rar;d%r? msert;]ons,
existingJCar d. These two steps are efficient. the larger the class Is, the higher the probability such-over

Before ending this appendix, we note thatpifopagat e esltzlmatignboc%urs. how th . d out”
estimates that, causes side effects, the splits and the edge 9. - (b) shows how t e_counts are gveragg out” among
weights are revoked. Otherwispy opagat e declarest,, is e equivalence classes during propagation, which caatsss f

side-effect free and it, can be translated and updated, Wgegatives. In Fig. 19(b), false negatives are directly prop

merge the splitG~ with Definition 5.5. Moreover, ag, Uonal to the size of equivalence class. . _
is inserted, the extended dangling tuples relatedt,toare These observations show that reducing the size of equiv-
removed fromG— and inserted intay+ alence classes reduces the errors. The selection of cémdida

view tuples from equivalence classes (Sec. 5.2) is a refine-
ment of equivalence classes. One may be tempted to use
APPENDIX D bisections to refine them until each class is smaller than
ANALYSIS OF SOURCE OF ESTIMATION ER- |E, 2|/0. However, our preliminary experiments show that
RORS such’a bisection-based method is not robust. In particular,
This appendix analyzes how errors are caused®@y d and the estimation accuracy is very sensitive to the value$.of
the estimation algorithm in Fig. 6. Foremost, we present th& improvement can be observed until a certain number of

scenario where errors may occur. bisections are applied that led to a sharp increase of atiesra
Proposition 4.1: Given an insertion of view tuple, and the

setT, of segments df,, if the number of new embeddings aﬁefAPPENDIX E
adding 7, into G~ is greater than 1, then (i) false pOSitiveSADDlTIONAL EXPERIMENTS
O

and (ii) false negatives are possible. o o
Due to space limitation, we could only highlight the rep-

Proof: The proof can be established by deriving two smajbsentative results in Sec. 10. Firstly, Sec. 10 presems th

examples. experiments witl)7 from TPc-H. In this appendix, we present

Suppose the estimator declares side effects when the copt experimental results of all join queries oc-H and show
returned by Proceduner opagat e is greater than or equal tothat the results are similar to tho&g7 presented in Sec. 10.
1 + 0. Otherwise, the estimator declares no side effect.  gecondly, while Sec. 10 presents the effectiveness of our
(i) We first illustrate false positives with a small exampl@ptimization techniques witlTPC-H, this appendix presents
shown in Fig. 19(a). We suppose that the view definition & supplementary experiment on theLP dataset. Finally, this
R < S < T. Suppose the segments of the view tupleare appendix presents the performances@r d on replacements
illustrated on therHs of Fig. 19(a) and theCard of G~ is on views with projections.
shown on theLHs of the figure. For simplicity, we assume
the segment; is new; and the segments, (@andt3) of R and E.1 Benchmark with All Join Queries of  TPC-H
S are old. We sketch the equivalence classes inJtbard |, this experiment, we testCar d on all join queries ofTPc-

whose cardinalities are indicated for illustration only. H [44] as listed in Fig. 20. In a nutshell, we extract the
Suppose that the tuples can join with a tuplet; of S join queries from therPc-H. Q1 and Q6 involve only one
andt; can be joined with;. Sincet{ is old and Procedure {aple and are thus omitted, as their side-effect detectias
propagat e usesest of theequivalence classf ¢ to conduct  strajghtforward. For the only cyclic join quex@5, we broke
estimation (Line 08). Whilet, cannot join withs, another the cycle by randomly removing a join when detecting side
tuple ¢, in the same class with,, can join with z3. By effects. We use the same settings as in Sec. 10. In particular
Procedurepr opagat e, the count returned is 1 (due to theye select 10% candidate tuples ahdvas0.4. Similar to the
new embedding) + X [Ec, .| x 1/|cs|, whereE,, .. isthe experiments in Sec. 10, we present the false positiwg gnd
number of joinable tuple pairs between the classeandc, f5)5e negativefN). The result is shown in Table 3.
containingt, andt,, respectively. Assume that the estimator grom Taple 3, we observe that the andFN equal to zero
declares side effect (positive) when the estimation is tgreasy; aimost all queries. Table 3 also compares the sidedeffec
than or equal to 1 4, where@ is a user-defined threshold.estimation time and the exact detection time. We observe tha
Thus, there are false positives when| / [Ec,c.| <1 /0. oyr side-effect estimation is on average 8.3 times fastn th
(i) Similarly, we can construct a case to show possibleefalshe exact detection on average. This further verifies thus-si
negatives, shown in Fig. 19(b). The insertion causes two neffect detection is often efficient while the estimation dan
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TABLE 3 o \
Performances of insertions on TPC-H benchmark queries ' —x— datie b —
Query [ # of [ # of | FP | FN | est. | detect L e e Gable 1 gl .t
tables | joins time | time £ 006 Y 1
(ms) | (ms) g E.l T sebe
Q1 1 0 - - - = 8 o004 ., ;, I Btable |
Q2 |5 4 0 0 | 59.1 | 300.8 & ; Tol |
Q3 |3 P 0 | 0 [ 140.6] 1096. W
Q1 |2 T 0 | 0 [ 455 | 4425 St ot R
Q5 3 5 0 0 699.5 1910. % of candidate tuples selected % of candidate tuples selected
8? é g 6 0 _716 ; '2942 (a) Fp of replacements (b) Est. time of replacements
Q% 8 7 00 [ 1767.9 53254 Fig. 22. JCard's error and runtime of replacements on
3190 g 3 0011 8 28273; ﬂég- views having projections on SYNTHETICDB
81; 3 Z B R 2 1A E.3 Supplementary Experiments of Replacements
QI3 [ 2 T 0 0 [ 103 | 934 on Views with Projections
4 [ 2 T 0 | 0 [ 661 [ 7202 ) . .
815 2 T 0 0 162 | 4274 We testJCar d’s performances of replacements on views with
81? g i 8 8 2-661 ggbsz projections. This experiment uses the same settingsyon
Q18 [ 3 2 0 [ 0 [ 140.6] 1096. THETICDB as presented in Sec. 10. Similar to the experiments
ot I 0 [ o [ ool 702 of insertions and deletions (Sec. 10 (Experiment F)), we
Q21 [ 4 3 0 | 0 | 4130 22441 presentlCar d's performances of replacements with respect to
@2 | 2 ! 0 [ 0 [103]%4 both the side-effect estimation error and the estimatiore ti

timation error. Fig. 22(a) reportsp of replacements of

r extendedJCard on views with projections. Fig. 22(a)
shows that with more joinsrpP increases rapidly. This is
E.2 Supplementary Experiments of Optimizations congste_m with the resul§ that it is harder to estimate join
with DBLP cardinalities accurately with more joins [28]. HoweverRs

Thi . h . q are well controlled under 7%. There is mol due to the set
is experiment uses the same settingp@LpP as presente semantics of projections.

in Sec. 10. Similar to the experiments of optimizations on =~ , ) o .

TPC-H (Sec. 10 (Experiment D)), we present the results of teStimation time. Fig. 22(b) reports the estimation time of
optimizations by presenting the effectiveness of equivade JCar ds with 2% candidate tuples on re_place_ments._ Fig. 22(b)
classes and the join tree selection. shows that replacements have almost identical estimétiu t

with insertions (Fig. 17(d)) as the times of deletions arg/ve
small, e.g, less than 30ms when = 0% (Fig. 17(e)).

: -, . E
easily tuned to be even more efficient and (at the same tlmoe§
highly accurate.
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Fig. 21. Performances of optimizations on DBLP
Effectiveness of equivalence classeBhis experiment verifies
that the equivalence classes are indeed important, byiskipp
the equivalence classes in the side-effect estimation. Wlie o
report therFN in Fig. 21(a) as the removal of the equivalence
classes will not causepr. We use the optimal join tree as
shown in Fig. 14(b) and Fig. 14(e). Foremost, the results are
consistent with those presented earlier — the more camdidat
tuples selected, the smaller the errors. We observe thatsthe
timation errors could be large without the equivalencesgas
When we compare the difference of errors with and without
the equivalence classes (Fig. 14(e) and Fig. 21(a)), wethate
the equivalence classes significantly improves the acmgac

Join tree selection.We perform the sampling method to select
optimal join trees as presented in Sec. 9. SiReés the real
error of theJCar d, we present the accumulate® of 1,000
negative insertions as shown in Fig. 21(b). In this expenime
we select no candidate tuple and et 0.4. We note that
the estimated error converges quickig., after 400 sample
insertions. Considering with Fig. 14(b), we observe that ou
sampling technique can easily determine the optimal j@esr

o

N
o
e




Q2

Q3

Q4

Q7

Q8

select *
from
part,
supplier,
partsupp,
nation,
region
where
p-partkey=ps_partkey
and s_suppkey=ps_suppkey
and s_nationkey=n_nationkey
and n_regionkey=r_regionkey

select *
from
customer,
orders,
lineitem,
where
c_custkey=o_custkey
and l_orderkey=o_orderkey

select *
from
orders,
lineitem
where
and l_orderkey=o_orderkey

select *
from
customer,
orders,
lineitem,
supplier,
nation,
region
where
c_custkey=o_custkey
and 1_orderkey=o_orderkey
and 1_suppkey=s_suppkey
and s_nationkey=n_nationkey
and n_regionkey=r_regionkey

select *
from
customer,
orders,
lineitem,
supplier,
nation nl,
nation n2
where
s_suppkey=1_suppkey
and o_orderkey=1_orderkey
and c_custkey=o_custkey
and s_nationkey=nl.n_nationkey
and c_nationkey=n2.n_nationkey

select *
from
part,
supplier,
lineitem,
orders,
customer,
nation ni,
nation n2,
region
where
p-partkey=1_partkey
and s_suppkey=1_suppkey
and l_orderkey=o_orderkey
and o_custkey=c_custkey
and c_nationkey=nl.n nationkey
and nl.n_regionkey=r_regionkey
and s_nationkey=n2.n nationkey

Q9

Q10

Q11

Q12

Q13

Q14

Q
=
o

Q16

Q17

select *

from
part,
supplier
lineitem,
partsupp,
orders,
nation

where
s_suppkey=1_suppkey
and ps_suppkey=1_suppkey
and ps_partkey=1_partkey
and p_partkey=1_partkey
and o_orderkey=1_orderkey
and s_nationkey=n_nationkey

select *
from
customer,
orders,
lineitem,
nation
where
c_custkey=o_custkey
and l_orderkey=o_orderkey
and c_nationkey=n_nationkey

select *
from
partsupp,
supplier,
nation
where
ps_suppkey=s_suppkey
and s nationkey=n_nationkey

select *

from
orders,
lineitem

where
1_orderkey=o_orderkey

select *

from
customer,
orders

where
c_custkey=o_custkey

select *

from
lineitem,
part

where
1_partkey=p_partkey

select *

from
supplier,
lineitem

where
1_suppkey=s_suppkey

select *

from
partsupp,
part

where
p-partkey=s_suppkey

select *
from
lineitem,
part
where
1 partkey=p_partkey

19

Q18 select *

Q19

Q20

Q21

Q22

DBLP

Fig. 20. The list of all join queries from TPc-H and the form of views from DBLP

from
customer,
orders,
lineitem,
where
c_custkey=o_custkey
and l_orderkey=o_orderkey

select *

from
lineitem,
part

where
1_partkey=p_partkey

select *

from
supplier,
nation

where
s_nationkey=n_nationkey

select *
from
supplier,
lineitem,
orders,
nation
where
s_suppkey=1_suppkey
and o_orderkey=1_orderkey
and s_nationkey=n_nationkey

select *

from
customer,
order

where
o_custkey=c_custkey

select *

from
Person,
RelationPersonInProceeding,
InProceeding,
Proceeding

where
PName=’bob’
and <join conditions>



