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Side-Effect Estimation: A Filtering Approach to
the View Update Problem

Yun Peng, Byron Choi, Jianliang Xu, Haibo Hu, Sourav S Bhowmick

Abstract —Views and their updates have long been a fundamental technology required in a wide range of applications. However, it has
been known that updates through views is a classical intractable problem. In this paper, we propose a novel, data-oriented approach
to this problem that provides a practical support for view updates. In particular, we propose a summarization of the source database
of views, which serves as an update filter. The update filter aims to efficiently reject untranslatable view updates by estimating the
side effects of the updates, thereby avoiding costly translation analysis. For applications where estimation errors are not preferred, our
update filter can be tuned to be exact. In this paper, we present our approach with SPJ views, an important class of view definitions. We
first revise the notion of estimation errors to quantify the filter’s qualities. We then propose a novel join cardinality summary (JCard)
derived from cardinality equivalence. An estimation algorithm is proposed. Finally, we present optimizations enabling the construction
of an accurate JCard through heuristics and sampling. Our extensive experiments show that update filters are efficient and can be
easily tuned to produce accurate estimations on TPC-H and DBLP.

Index Terms —View update, side-effect estimation, relational database
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1 INTRODUCTION

Views have been an important facility provided byDBMSs
that allow users to access specific parts of a database. Over
the years, views have remained useful in a wide range of
emerging applications, such as data publishing or information
dissemination [12],XML or RDF query rewriting [32], [37],
query optimization [26] and tracing facility in P2P networks
[35]. It is evident that these applications not only query, but
also update views as if they were the actual database. Updates
on views are translated to updates on the source databases of
the views, and the views and its source databases must keep
consistent after updates.

Example 1.1: To illustrate the view update problem, let
us consider an example as shown in Fig. 1. Suppose we
have a viewV that joins Product, Supplier, Order,
and Agency. (For illustration purposes, this example omits
integrity constraints.) Suppose we insert (S4, FL, P6, C3, A5)
into V as indicated byu1. The only way is to insert (S4, FL)
into Supplier and (A5, P6) into Agency. However, since
tuple p2 is also joinable with tuples1, the insertions of (S4,
FL) and (A5, P6) cause an unspecified effect of inserting (S4,
LA, P6, C3, A5) into V . In fact, we cannot translateu1 without
causing extraneous tuple(s) inV .

Updates through views have been one of the classical
problems in databases. However, data are now ubiquitous
and often provide insights to seemingly hard problems (e.g.,
[8]). In this paper, we propose a new data-oriented approach
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Fig. 1. An example of a view and source database tables

that extensively exploits data summaries in source databases
(in addition to schema information and view definitions) to
extendpractical support of view update(s). To our knowledge,
excepting theoretical studies on complement views, prior work
has not explicitly exploited summaries of source data.

View update analysis can often be computationally expen-
sive. For instance, the view update problems under many
settings are NP-hard [13], [14]. View update analysis includes
two major steps: side-effect analysis and view update transla-
tion. Much extant work directly translates view updates, which
can sometimes be inefficient. In contrast, we focus on side-
effect analysis. In addition, we observe that in practice, view
updates often cause side effects. We propose to reject (also
referred tofilter) such view updates early in our side-effect
detection. Only side-effect free updates are passed to the nec-
essarily heuristic update translation. More importantly,when
certain errors in the detection are allowed, which have not
been proposed before, the detection can be significantly faster.
As a result, view updates that are (or estimated) untranslatable
are rejected early, enabling less costly update translation.

More specifically, we propose aData-oriented View Up-
dater. The side-effect detector and update translator in our
updater exploit data summaries of source databases, in addition
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to database schemas and view definitions.
Overview of our updater. Fig. 2 depicts an overview of
our proposed updater. (i) The side-effect detector efficiently
estimates side effects caused by a view update. (ii) It rejects
those with side effects. The detector can be tuned to be exact
(i.e., no estimation error) such that no tuple in a source
database is ever summarized. (iii) Updates of the view that
are not filtered by the detector are processed by an update
translator. (iv) Translatable view updates are applied to the
database, and the view and the side-effect detector. Our up-
dater is independent of translation algorithms. For illustration
purposes, we assume the heuristics ofSAT [12], amongst the
ample work on translation algorithms. In this paper, we focus
on the details of a side-effect detector.
Example 1.2: The performance improvement from a side-
effect detector can be illustrated via a simple experiment with
TPC-H benchmark dataset (1G bytes) and a view definition
derived from a simplified Q7 of the benchmark. (The details of
Q7 are presented in Sec. 10.) Note that the side-effect detector
is tunable to compromise between estimation time and error.
In the experiment, the detection time of Q7 is approximately
3s whereas the estimation time is smaller than one second. We
can easily tune the detector to be error free. Let us denote the
side-effect estimation time ast. Assume variableT captures
the time for update translation which is at least 100s. That
is, t ≪ T . Further assume that 20% of view updates are side-
effect free view updates, whereas 80% of the updates have side
effects. Without the side-effect detector, the view updatetime
is simplyT (i.e., at least 100s), whereas the view update time
with a side-effect detector with no observed error ist+0.2T .
Therefore, the view update analysis time is reduced by almost
80%, fromT to t+0.2T .

Detecting side effects can be significantly more efficient
than translating updates (recall Example 1.2), as a detector
only requires to signify theabsenceand presenceof side
effects. To support this, we propose aJoin Cardinality Sum-
mary (JCard). The novelty ofJCard relies on the structures
of join cardinality equivalence classesand candidate view
tuples. First, (i) we summarize the tuples of a database by
equivalence classes.JCard is often very small and side-
effect estimation onJCard is efficient. Although the estimated
count of side effects using the equivalence classes may be far
from the exact one, it is sufficient to detect the presence of
side effects. Second, (ii) to support accurate estimations, we
propose to refine the classes by selecting certain candidate
view tuples based on how likely they are to appear in views.
Our experiments show that using a small number of candidate
tuples leads to highly accurate estimations.

We remark that due to the nature of the view update
problem, any practical algorithm that runs in PTIME nec-
essarily rejects some translatable updates. Thus, side-effect
estimation allows to introduce a small number of additional
errors but further optimize the detection time. In Example 1.2,
the detection time was around 3s and the estimation time was
smaller than one second, whereas our summarization did not
introduce errors.

Finally, the overall benefit of the side-effect detector also de-
pends on the percentage of view updates with side effects. For
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Fig. 2. The overview of our data-oriented view updater

instance, following up on Example 1.2, if view updates having
side effects account forx% of all updates, our updater reduces
the time of view update analysis by up tox%. We observe
from popular real-world and synthetic benchmark datasets and
random updates that view updates with side effects can be
clearly more than those without. Thus, in practice, our side-
effect detector has a high potential of avoiding potentially
costly update translations.

Contributions. The main contributions are as follows.

1. We show thatKL divergence can serve as an upper bound of
the estimation error of our side-effect detector. Furthermore,
we revise the notion of errors of estimation.

2. We propose a novel summary structure for our side-effect
detector, calledJoin Cardinality summaryJCard. At the core
of JCard is the notion of cardinality equivalence of tuples.
JCard comprises two structures: (i) database summaries and
(ii) a set of candidate tuples. We present the construction of
JCard and side-effect estimation algorithms.

3. We propose techniques to support side-effect estimations
of insertions, deletions, and replacementson the SJ view. To
support projections, we propose an extension ofJCard based
on value-cardinality equivalence.

4. We formally define two optimization problems inJCard
construction, and propose a heuristic and a sampling solution
to these problems, respectively. In particular, (i) we establish
that our candidate tuple selection problem is equivalent to
the Minimum Set Cover (MSC) problem. We therefore adopt
heuristics forMSC to address our problem. (ii) To determine
the optimal representation of a view definition, we employ a
simple sampling technique (e.g, estimation of proportion) to
quantify the estimation error of view definition representations.

5. We conduct a set of extensive experiments with synthetic
and real datasets that verifies the effectiveness and efficiency
of our proposed techniques and compare with one of the
latest related work. Our experiments show that our side-effect
detector can be easily tuned to be accurate.

Organization. The rest of this paper is organized as follows:
Sec. 2 presents the related work. Sec. 3 provides preliminaries
and the problem statement. We define the notion of errors for
side-effect estimation in Sec. 4. Our join cardinality summary
JCard is presented in Sec. 5, and Sec. 6 presents estimation
algorithms onJCard. We study howJCard supports deletions
and replacements in Sec. 7, and projections are supported
in Sec. 8. Next, Sec. 9 addresses two optimization problems
in the construction ofJCard. An experimental evaluation is
presented in Sec. 10. Finally, Sec. 11 concludes this work. All
proofs are presented in Appendix A.
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2 RELATED WORK

The view update problem is one of the classical problems
in databases [15], [18], [19].In addition, view updates are
involved in recent research and applications, such as [5], [11],
[20], [36]. Due to space constraints, this section only presents
certain non-exhaustive representative works relevant to our
approach. One may consult the literature for more complete
reviews of the problem (e.g., [11], [30]).

Previous researchers [15], [19], [29] studied the view update
problem under various view definition syntaxes (e.g., select,
project, acyclic join) and constraints (special forms of primary
and foreign key constraints and functional dependencies) of
source databases. Prior results suggest that limited support
of view updates can be achieved inDBMSs. In particular, a
seminal paper by Dayal and Bernstein [19] showed that the
view update problem was undecidable under various settings.
Different from other existing works, Keller [29] defined five
criteria of correctness of view update translations and proposed
algorithms to enforce correct update translations. In contrast,
this paper focuses on capitalizing on a view’s source data for
practical support of view updates.

Bancilhon and Spyratos proposed the seminal work on
view complements [15]. View updates could be translated
without side effects if the updates resulted in unchanged view
complements (a.k.atranslation under a constant complement).
The results of view complements were followed-up in the
proposal of “consistent views” [24]. View complements are
source data that are analyzed with view translation. Finding
the minimum view complement is, in general, intractable [33],
[34] and related research covers only the theoretical aspects
of view complements. To our knowledge no research on the
practical applications of view complements exists.

Other related research includes updates throughXML views
[4], [7], [12], [45]. One stream of research (e.g. [7]) cast
an XML view into relational views and exploited relational
techniques to solve theXML view update problem. Another
stream of work (e.g., [4], [12]) addressed updates through
recursiveXML views. Previous work [12] used source data to
encode anXML view update as aSAT instance and used a
SAT solver to determine update translation. Yet, how source
data can be exploited to optimize update translation remains
unexplored. Recently, a framework with polymorphic type
inferences and lineage tracing approaches has been proposed
to support updates through restrictedXML views [20]. However,
its advantages may not be obvious for relational views.

Recent progress on view updates includes the follows. Bi-
directional transformation oftrees [21] permits operations
for universal data (concrete tree and abstract view) synchro-
nization and relational view updates [3]. Kotidis et al. [31]
introduced and exploited physical IDs for view updates, which
requires an intrusion on the physical layer ofDBMSs. Boneva
et al. [5] proposed tree automata techniques for determining
update programs for a fragment ofXML view updates, with and
without constraints. Liu et al. [36] proposed the view update
analysis in a pureXML context. Cong et al. [13], [14] studied
the time complexities of various versions of view update.

Regarding filtering, Luo et al. [38] proposed a filter for

TABLE 1
Table of frequently used notations

I database instance R or Ri relation
V view definition JV (JR) join tree (rooted atR)
V =V(I) view G database graph
tv a tuple in view G+ source graph
ti segment oftv for Ri G− negative graph

the view maintenance problem. However, view maintenance is
the “inverse” problem of view update. Specifically, the former
propagates updates of source databases to views, whereas the
latter propagates updates of views to source databases.

There are some studies of view update with lineage tracing
(sometimes referred to as data provenance) in the literature.
Lineage describes the origins of data and/or its processing
history in databases [9], [17]. Lineage has been studied
in various application contexts (e.g. data warehouse [17],
uncertainty data [1], [46], scientific data [6]). Specifically,
Cui et al. [17] proposed techniques to trace the lineage of
view tuples and their transformations in data warehouses.
However, [17] focuses on lineage computation and does not
study view update. The TRIO project [46] aims at integrating
the management of data, data accuracy and its lineage. A
prototype of TRIO can be found inULDB [1]. However, TRIO

andULDB focus on uncertain data. More importantly, [1], [17]
determine exact lineage. As motivated, if adopted, exact side-
effect detection can be inefficient. In contrast, we propose
an estimator that can be tuned to be inexact. Green et al.
[25] proposed ORCHESTRA that uses lineage to support data
sharing across large communities and propagates updates from
one peer to another. In contrast, we study propagating updates
of views to source databases. Bhagwat et al. [2] proposed an
annotation management system. It associates an annotationto
each cell of a relation, which is termed aswhere-provenance in
[10]. However,where-provenance misses the join information
of view tuples, as the join attributes may be projected out.
In comparison, the view update problem studied in this paper
requireswhy-provenance [10]. Cui et al. [16] and Buneman
et al. [10] usedwhy-provenance to support view deletions.
As presented in [16], [41], it is not clear how lineage to
support insertions, as tuples to-be-inserted (and hence and their
lineage) in general do not exist in the views. In comparison,we
support both insertions and deletions. Due to space restriction,
we refer the interested readers to [41] for details of lineage.

In relational databases, selectivity estimation is one of the
key steps in query optimization. Query optimizers rely on
accurate result counts of (sub-)queries to quantify evaluation
times of query plans. Classical techniques include building
histograms of data and utilizing statistical assumptions,such as
uniform distribution and independence of join predicates [43].
Recently, Getoor et al. [22] proposed a uniform framework
to estimate the count of select-and-join queries, derived from
Bayesian networks. Bayesian networks minimize overall
errors, whereas side-effect estimation intuitively focuses on
small errors only and large errors are simply irrelevant.

Up-to-date, the support of updates through views in com-
mercial relationalDBMSs (e.g., [27], [39], [42]) is provided
for rather restricted views. In contrast, this work proposes an
optimization of side-effect estimation to extendDBMSs with
the capability to support practical view updates.
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3 PRELIMINARIES AND PROBLEM STATEMENT

This section presents the preliminaries and the problem state-
ment of this paper.

We use⊕ to denote an application of an update,e.g., V ′ =
u⊕ V denotes the view after updatingV with u.

Syntax for view definition. We present our techniques with an
important class of view definitions, namelyselect, projectand
join queries (SPJ queries). We remark that any SPJ query can
be converted into the following normal form in linear time:

V = πA(σP (R1 ⊲⊳ R2... ⊲⊳ Rn)),
whereA is the set of projection attributes of the view,P is
the selection predicates andRis are relations fori ∈ {1,...,n}.
Hence, the technical discussions of this paper assume this
normal form. We mostly focus on side-effect detection with
join queries, as they are the most technically challenging.Then
we present extensions to support projections.In this paper,
we assume the joins form a tree. Join trees are common in
practice and can simplify our side-effect detection. Note that
each relation inV can serve as the root of a join tree and
different join trees lead to different estimation accuracies.

Source of view tuple. A view tuple tv can be decom-
posed into n segments, t1,..., tn, where ti = πAi

(tv)
and Ai denotes the attributes ofRi in V. We call
∪i=1...n {ti | ti is a segment oftv and ti ∈ Ri } the source
of tv. For example,{s2, p3, o3, a1} is the source of the view
tuple v1 in Fig. 1. We remark that in general,ti may not
always exist in the source database.

View update problem. The view update problem can be
presented as follows:Given a view definitionV of a relational
database instanceI, where the viewV is V(I), and an update
u on the viewV , find a translated updateu′ on I such that
u ⊕ V(I) = V(I ⊕ u′).

An updateu having a possible update translationu′ is called
a translatable update. Otherwise,u is called anuntranslatable
update. Untranslatable view updates are untranslatable often
because they lead to certain side effects [29]. We recall the
definition of side effects as follows.

Side effects.Given an updateu on a viewV = V(I) and its
translationu′ on I, side effectsof u′ are the changes on the
updated viewV(I ⊕ u′) that are not specified byu.

Much previous work on view updates (e.g., [12]) involves
rejecting untranslatable view updates as early as possible,
proposed as an optimization of update translation.

This paper proposes a side-effect detector, which may be
further tuned to be an efficient estimator. Our side-effect
detector has two types of errors. (i) False positives denote
that the view updates do not lead to side effects but the
detector declares side effects and rejects the updates. (ii) False
negatives denote that the view updates cause side effects in
fact but the detector declares no side effect. False positives
are thetrue error of our view updater, whereas false negatives
are a performance issue as they will be detected in the update
translation. False positives and false negatives will be defined
formally in the next section.

4 QUALITY OF SIDE-EFFECT DETECTOR
This section presents the notion of errors used in our proposed
detector. A side-effect detector can be considered as a special

form of a probability distribution estimator. Sec. 4.1 presents
the relationship between the Kullback-Leibler (KL ) divergence
of probability distribution estimation and the expected error of
our side-effect estimation. First, not surprisingly,the expected
side-effect estimation error is bounded by theKL divergence.
Specifically,if the KL divergence of the probability distribution
estimation tends to zero, the expected side-effect estimation
error tends to zero as well. Second, in the context of updates, it
is not feasible to enumerate the infinitely-many future updates.
Sec. 4.2 presents a revised notion of errors on a finite set
of updates. In the analysis, we do not consider alternate
sequences of updates where errors depend on the choice of
update sequence not detectors. For presentation simplicity, we
present our analysis with insertions, unless otherwise specified,
as deletions are obviously bounded by the view.

4.1 Analysis with KL Divergence

To describe the analysis of the estimation quality, we first
recall the definition ofKL divergence (KL), which is used to
measure the distance between the real and estimated distribu-
tions. LetPD(X) andPE(X) be the real distribution and the
estimated distribution of arandom variableX, respectively.
Then, we have the following:

KL(PD(X)||PE(X)) =
∑

X∈X

PD(X) log
PD(X)

PE(X)

We use random variablesS and J to capture possible
selections and joins on attributes of all possible viewsV on a
database instanceI. We use a random variableM to denote
possible insertions. (An insertion eventM∈M is modeled
as (S, J), where S∈S and J∈J.) For simplicity, we skip
projections in this analysis, as detectors can be extended with
projections (detailed in Sec. 8). We remark that an insertion
may involve attributes besidesS andJ . The analysis of these
attributes is trivial and hence omitted. Let|V | denote the size
of view V ∈ V before an insertion and letfreal(M,V ) and
fest(M,V ) denote the real and estimated view sizes after an
insertion, respectively. We may omitM andV when they are
clear from the context.

As discussed at the end of Sec. 3, a side-effect detector
has two kinds of errors: false positivesE+ and false negatives
E−. Let θ be a user-tunable parameter of acceptable estimation
errors, where 0≤ θ ≤ 1. The formal definitions ofE+ and
E− are given below.

Definition 4.1: False positivesE+(M ,V ): Given an insertion
M on a viewV , E+(M ,V ) is defined as follows:

• E+(M ,V )=1, if freal=|V |+1 andfest≥freal+θ; and
• E+(M ,V )=0, otherwise.

Definition 4.2: False negativesE−(M ,V ): Given an insertion
M on a viewV , E−(M ,V ) is defined as follows:

• E−(M ,V )=1, if freal>|V |+1 andfest<|V |+1+θ; and
• E−(M ,V )=0, otherwise.

We remark thatE+ andE− are two binary random vari-
ables. The expected error can be expressed as the integration
of all possible insertionsM on all possible views over their
probability distributionP (M,V):

EXP (E+(M,V)) =
∑

M∈M

∑

V ∈V

P (M,V ) × E+(M,V ).
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We highlight that a side-effect detector is not simply a
classical estimator of cardinalities. Classical works on se-
lectivity estimation focus onoverall accuracies of estimated
cardinalities. However, side-effect estimation requiresonly an
accurate estimation of cardinalities that signifies theboundary
between the absence or presence of side effects.

Example 4.1: To illustrate the main difference between side-
effect estimation and cardinality estimation, we present two
detectors, namelyJlineitem andJorder, on a simplified Q7 of
TPC-H. While the details of these detectors are presented in
Sec. 10, they can now be understood as detectors using differ-
ent summaries of the result of Q7 and the source database.
We set θ to 1. That is, a view insertion with side effects
changes the view size by a number greater than or equal to
2. (An illustration of the experimental result of estimation is
shown in Fig. 18 in Appendix B.) We tried 1800 insertions,all
with side effects. We report that the error ofcardinalities of
Jlineitem was 3.7 times smaller than that ofJorder. In contrast,
a side-effect detector requires to distinguish (i) the insertions
that change the view size by 1 and (ii) those greater than 1.
The exact change in cardinalities that is larger than 1 is not
important. With this notion of errors, our experiment found
that Jlineitem exhibited 79 incorrect side-effect estimations
while Jorder did not produce any incorrect estimation.

While false positives and false negatives of a side-effect
detector are defined with an error thresholdθ, the quality
of a detector still exhibits a close relationship with theKL

divergence. These are summarized in Propositions 4.1 and 4.2.
Proposition 4.1: When KL divergence of the
estimated distribution of insertions tends to 0, i.e.,
KL(PD(M,V||PE(M,V)) → 0, the expected false positives
of the detector tends to 0, i.e.,EXP (E+(M,V)) → 0.

Proof idea:We model the possible views and their updates
by random variables. The expected value of false positives
is expressed in terms of these variables. In the arithmetic
derivations, we apply the Markov’s inequality and Pinsker’s
inequality to obtain a bound that consists ofKL divergence.
Then, we can easily show that asKL divergence tends to zero,
so does the expected values. Please refer to the full arithmetic
derivations in Appendix A.1
Proposition 4.2: When KL divergence of the
estimated distribution of insertions tends to 0, i.e.,
KL(PD(M,V)||PE(M,V)) → 0, the expected false negatives
of the detector tends to 0, i.e.,EXP (E−(M,V)) → 0.

Proof idea:Similar to that of Proposition 4.1.

4.2 Revised Notion of Errors
Propositions 4.1 and 4.2 show that it makes sense to construct
a side-effect detector by minimizing theKL divergence be-
tween the detector and the actual data. The unique problem in
a side-effect detector is that theKL divergences are defined on
all possible futureinsertions, which can be infinitely-many.
However, therelative qualitiesof detectors only depend on
certain attributesof the database, and more importantly, a
finite setM ′ of insertions.

Let tv denote the view tuple to-be-inserted andtv.A denote
the value ofA in tv. Let dom(A) and adom(A) denote the
domain and active domain of attributeA, respectively. Next,
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Fig. 3. Illustration of join tree, database graph, embed-
ding and partial embedding

we present the attributes and insertions that are irrelevant to
the relative qualities of the detectors.

(i) Suppose attributeA is projected out. If |dom(A)| is
infinite, or |dom(A)| is finite but|adom(A)|<|dom(A)|, A is
irrelevant to the qualities of detectors as an update translation
can always find a new value ofA without causing side effects.

(ii) On the other hand, ifA is in a view definition, regardless of
its domain. Iftv.A is new,tv.A does not cause side effects and
is irrelevant to the detector’s quality. Otherwise,tv.A exists in
the database and the number of its possible values is bounded
by |adom(A)|.

Based on the observations above, in Definition 4.3, we for-
malize the effective insertions that affects detectors’ qualities.
We remark that Definition 4.3 is independent of any error
metrics. Moreover, this notion of errors is useful in building
summaries for side-effect estimation/detection.

Definition 4.3: Effective insertionsof a viewV(I) are a finite
setM ′, whereM ′ is an enumeration of insertions on:

• the active domains of the attributes onV; and
• the domains of the attributes of finite domains in the

relations participating inV.
The revised errorof a detector is its error onM ′.

5 JOIN CARDINALITY SUMMARY (JCARD)
In this section, we propose ajoin cardinality summary(JCard)
for estimating side effects.JCard is specially designed for
joins since joins are technically challenging in SPJ views.For
illustration purposes, we presentJCard with insertions, unless
otherwise specified.JCard has two components. (i) The first
one is the summary of the dangling tuples of a database (i.e.,
those do not currently form any view tuple). (ii) The second
one iscandidate tuplesand they capture how close dangling
tuples may form view tuples, under random insertions. When
a view tuple is inserted, both components are used to estimate
the change of the view size. For simplicity, in this section,we
assume that the primary keys of the tuples are present in the
views (i.e., SJ views). We remove this assumption in Sec. 8.
5.1 Terminologies and Notations
We first give the notations needed to presentJCard. Suppose
the viewV involvesR1,...,Rn relations. We construct a join
treeJV as follows. Each relationRi forms a node inJV , also
denoted byRi as the meaning is often clear from the context.
If there is a join betweenRi andRj in V, we create an edge
(Ri, Rj) in JV . The join tree rooted atRi is denoted asJRi

.
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Join trees of different roots may have different accuraciesin
side-effect estimation.

We use adatabase graphG(V,E) to represent the database
I. A node t∈V denotes a tuplet in I and an edge(t, t′)∈E
denotes thatt and t′ are joinable w. r. t.V.

Example 5.1: Consider the view shown in Fig. 1. Fig. 3(a)
presents the join treeJSupplier rooted atSupplier. Fig. 3(b)
shows the database graphG.

Next, we introduce the terminologies to discuss the tuples
summarized inJCard.

Embeddings and partial embeddings.SupposeS is a set
of tuples inG where each tuple belongs to a distinct relation
in JV . If the tuples inS form a view tuple,S is called an
embeddingof the join treeJV . Otherwise,S may form a
partial embeddingof JV , defined in Definition 5.1.

Definition 5.1: Given a set of tuplesS in a database graphG
and a join treeJV , S is a partial embeddingof JV , if

(i) the tuples inS together with the tuples inG do not form
a view tuple;

(ii) each tuple inS belongs to a distinct relation;
(iii) the tuples inS are joinable; and
(iv) S is maximal,i.e., no tuple can be added toS and (i)-(iii)

are true.

Example 5.2:Continue with Example 5.1. Fig. 3(c) shows an
embedding ofJSupplier as the tuples are of different relations
and they form the view tuplev3 in Fig. 1. {s1, p2, o2} shown
in Fig. 3(d) is a partial embedding. However,S={p4, o4, a2}
is not a partial embedding asS and s4 form a view tuple.
S′={p2, o2} is not a partial embedding ass1 can be added toS′

and Conditions (i)-(iii) of Definition 5.1 are true.{s5, p6, a3}
is also not a partial embedding as the tuples are not joinable.

Dangling tuples and extended dangling tuples.Dangling
tuples are the tuples that do not form an embedding. Dangling
tuples may become non-dangling (i.e., form view tuples) after
an insertion. The estimation of side effects is more accurate
with not only dangling tuples but alsoextended dangling tuples
(Definition 5.2). The intuition is that given an insertion, some
dangling tuples may become non-dangling and the extended
dangling tuples may cause additional view tuples,i.e., side
effects. Thus, we summarize both kinds of tuples. Finally, we
remark that extended dangling tuples may join with some other
tuples and unlike dangling tuples, they may appear on the view.

Definition 5.2: Extended dangling tuplescomprise (i) dangling
tuples; and (ii) the tuples that can form, together with some
dangling tuples, a partial embedding of any subtree of the join
treeJV .

Example 5.3: In Fig. 3(b), p2 is an extended dangling tuple
as it is a dangling tuple (Definition 5.2(i)).o4 is an extended
dangling tuple as it forms a partial embedding{o4, a2, p5}
with the dangling tuplesa2 andp5 (Definition 5.2(ii)).

s1 s5

p1 p2 p5

o4o1 a2 a3o2

Supplier

Product

Order Agency

(b) Join cardinality equivalence class

p6

s1 s5

p1 p2 p5

o4o1 a2 a3o2

Supplier

Product

Order Agency1 1

0
p6

1 0
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0

1 1 1

(a) Join cardinalities of tuples in G−

Supplier
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Order Agency

(c) Summary of G−
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(d) Candidate tuples
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Fig. 5. Illustration of JCard and candidate tuples

Similar to tuples in a database, the dangling and extended
dangling tuples may be represented by graphs.

Definition 5.3: Given a source databaseI of a view V , the
database graph obtained from the extended dangling tuples
in I is called thenegative graphG−. The database graph
obtained from the source tuples of the viewV is called the
source graphG+.

Example 5.4: Fig. 4(a)-(b) show the source graphG+ and
the negative graphG− of the database graph in Fig. 3(b),
respectively.

We remark thatG+ contains all the embeddings inG and
G− contains all the partial embeddings inG. G+ and G−

may be overlapping due to the extended dangling tuples but
G+∪G−=G holds.G+ andG− together are an exact repre-
sentation of the databaseI, in the sense that any side effect
of updates onI can be determined from them. Obviously, the
sizes ofG+ and G− is O(|I|), which can be too large for
efficient estimations. Therefore, we summarize them in the
next subsection.
5.2 JCard Definition
JCard handlesG+ and G− differently. G+ contains the
embeddings, which are the tuples of the view, and can be
easily maintained and indexed. Therefore, we focus on the
summary ofG− in this subsection.

The summarization ofG− is derived from a notion ofjoin
cardinality equivalencebetween nodes, denoted ast1 ≈ t2, w.
r. t. a join treeJV . To define the join cardinality equivalence,
we first define the join cardinality of tuples.

Definition 5.4: Given a join treeJRi
(rooted atRi of V) and

a negative graphG−, let t be a tuple inR ∈ V, the join
cardinality of t, denoted ast.jcard, is defined as follows.
(i) If R is a leaf relation inJRi

, t.jcard=1;
(ii) Otherwise t.jcard=

∏
R′∈ℜ

(
∑

(t,t′)∈G−,t′∈R
(t′.jcard)),

whereℜ is the set of child relations ofR in JRi
.

The intuition of t.jcard is that we traverse the join tree
JRi

bottom-up and join the relations visited, andt.jcard is
the number of intermediate join results containingt when the
bottom-up traversal reachesR.
Example 5.5: Consider the negative graphG− in Fig. 4(b)
and the join treeJSupplier in Fig. 3(a). Fig. 5(a) shows the
join cardinalities of tuples inG−. The jcards of the tuples
in Order and Agency are 1 by Definition 5.4(i). Tuples in
Product andSupplier are the product of thejcards of their
child relations, respectively, by Definition 5.4(ii). In particular,
p1.jcard=1×0=0, whereo1.jcard is 1 asp1 joins with o1
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in Order; and 0 is jcard from Agency as p1 does not join
with any tuple inAgency.

Definition 5.5: Given a join treeJRi
(rooted atRi of V)

and a negative graphG−, t1 andt2 arecardinality equivalent
(denoted ast1 ≈ t2) if the following statements hold:

(i) t1 and t2 are in the same relationR;
(ii) t1.jcard = t2.jcard; and

(iii) the child relations ofR, in which t1 has joinable tuples,
are identical to those oft2.

Side-effect estimation usingG− is accurate due to the
following reason.JCard (G−) summarizes the tuples by the
equivalence classes. All partial embeddings inG− are com-
pactly represented by equivalence classes. Upon an insertion
of a tuple, the tuple is joined with the equivalence classes
and the estimation is to determine theaverage joinable tuples
in a class. When the insertion produces a large or moderate
number of new embeddings (side effects), the average count
is sufficient to signify the presence of side effects.

Example 5.6:Fig. 5(b) shows the join cardinality equivalence
classes corresponding to the join cardinalities of tuples shown
in Fig. 5(a). We remark that even thoughp1 and p6 have
the samejcard 0, they are of different classes asOrder
is the joinable child relation ofp1, but that ofp6 is Agency

(Definition 5.5(iii)).

JCard structure and its construction. JCard is a graph of
supernodes, where each supernode represents an equivalent
class inG−. The supernode of the equivalent classc is also
denoted byc as the meaning is clear from the context. A
supernode is a binary tuple (|c|, c.est), where|c| is the number
of tuples inc andc.est is the estimated averagejcard of the
tuples inc. JCard is constructed by the rules below.

1) For each leaf relationR in JRi
, create a supernode (an

equivalence class) for all tuples inR, as all tuples inR
are cardinality equivalent, by Definition 5.5.

2) ConstructJCard bottom-up:

a) For each non-leaf nodeR in JRi
, partition the tuples

in R by Definition 5.5;
b) For each equivalence class, create a supernodec to

represent that class and add an edge(c, c′) if there
exists tuples inc that join with tuples inc′; and

c) Determine the weight|Ec,c′ | of (c, c′) as the number
of joins between the tuples inc and those inc′, where
|Ec,c′ | will be used in estimation.

Example 5.7: Fig. 5(c) presents theJCard summary ofG−

in Fig. 4(b). Each node in Fig. 5(c) summarizes an equivalent
class in Fig. 5(b). In particular, the nodec3P (1, 0) means that
the classc3P contains one tuple and the average join cardinality
of tuple in c3P is 0. |Ec1

A
,c3

P
|=1 means that there is one join

betweenc1A andc3P .

There are two remarks onJCard worth-noting. First, for
simplicity, Definition 5.5 defines the equivalence based on
identical count. In general, we may define an equivalence using
similar counts, which leads to even smaller summary graphs.
Our experiments show that by using Definition 5.5, we obtain
small summaries of our benchmark datasets and we do not
further reduce the summary size. Second, since we always

analyze summary graphs,we overload the notationsG− and
G+ to refer to the summaries, unless otherwise specified.
Candidate view tuples. JCard summarizes tuples inG−

based on (join) cardinalities. Certainly, the cardinalities are
directly relevant to the number of view tuples generated from
insertions. However, it does not consider howlikely dangling
tuples may form view tuples. Suppose view insertions are
random. The dangling tuples that form an embedding with just
fewer new tuple segments will form view tuples easier than
other dangling tuples. Therefore,JCard’s second structure is
sets ofcandidate view tuples. Each set ofcandidate view tuples
is simply a set of tuples that forms a partial embedding to
the join tree. The rank of each tuple set is defined to be the
number of new tuple segments needed to form an embedding.
Each individual candidate tuple will be split from its original
equivalence class and form an individual equivalence classin
G− by itself (i.e. no summarization).

Example 5.8: Continuing with Example 5.7, if we are given
a budget to take one candidate tuple set, we will select{s1,
p2, o2} or {o4, p5, a2} as they will form embeddings by
one additional segment, respectively. Specifically,{s1, p2, o2}
needs a new segment ofAgency joinable top2 and {o4, p5,
a2} needs one ofSupplier joinable top5, whereas other two
partial embeddings need two segments.

6 SIDE-EFFECT ESTIMATION WITH JCARD
As illustrated in Example 4.1, traditional join cardinality esti-
mations may not be suitable for side-effect estimation as they
minimize overall errors on cardinalities. This section presents
our side-effect estimation algorithm onJCard. Due to space
limitations, an analysis of the causes of errors, which reveals
the design issues ofJCard, is presented in Appendix D.

Our side-effect estimation of a view insertiontv consists of
two steps. The first step is to jointv with the source tuples
of V in G+. If the join result is not empty, thentv forms
additional view tuple(s) (i.e., side effects) and hence rejected.
Otherwise, the second step estimates the join cardinality of tv
with the extended dangling tuples inG−. This section focuses
on the second step as it is more technically involved.

Fig. 6 presents the overall estimation algorithm. The in-
puts of estimate_side_effects are theJCard, the view
definition in the form of join treeJR, the view tuple
to-be-insertedtv and a parameterθ on the error thresh-
old. estimate_side_effects estimates the number of
new view tuples generated by insertingtv. We recall that
estimate_side_effects declares a side-effect free inser-
tion when the estimated number of new view tuples is smaller
than 1 +θ; otherwise, it declares side effects.

The details ofestimate_side_effects can be described
as follows. Given a view tupletv to-be-inserted, we decom-
pose it inton segmentst1, . . . , tn, wheren is the number
of relations inJR, by decompose_view_tuple in Line 01.
Each segmentti corresponds to a relationRi in JR. t1,..., tn
form at least an embedding onJR for a valid insertion. We
updateJCard via update_equiv_class for a more accurate
estimation. In a nutshell,update_equiv_class creates a
new equivalence class inG− for each new segment. Ifti
exists inG−, we split ti from its original equivalence class
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Procedureestimate_side_effects
Input : view tuple to-be-insertedtv , join treeJR of view,

JCard G− and error thresholdθ
Output : true if it estimates side effects;false otherwise
01 C = decompose_view_tuple(tv , JR)
02 G−′ = update_equiv_class(JR,G

−,C)
03 for each equivalence classc of the root relationR of JR
04 propagate(c, G−′, JR)
05 letC to be the classes ofR that form embeddings withtv
//let a denote the number of embeddings inG− without ins.
06 return (

∑
c∈C (c.est×|c|) - a > 1 + θ)

Fig. 6. Procedure estimate_side_effects

Procedurepropagate
Input : an equivalence classc, JCard G− and join treeJR
Output : the estimated averagejcard of tuples inc: c.est
01 if c is a leaf node inG−

02 return c.est = 1
03 else//supposec is of relationR′ in JR
04 for each child relationR′′ of R′ in JR

//let c′ denote a child ofc in G−

05 for each c’s child c′ of R′′

06 if !c′.visited then propagate(c′, G−, JV)
07 c.est.R′′ =

∑
c′ of R′′ (c′.est×|Ec,c′ |/|c|)

08 return c.est =
∏

child R′′ of R′ in JR
(c.est.R′′)

Fig. 7. Procedure propagate

and update the edge weights ofJCard correspondingly. Due
to space limitations, we present its details in Appendix C.

The essence of Procedurepropagate is the propagation
logic of estimation of counts (Line 04). Lines 05-06 simply
sum up all the estimation counts of the classes that may form
embedding(s) withtv.
Propagation of estimation counts.Procedurepropagate
is a recursive procedure that estimates the number of new
view tuples by inserting the view tupletv (Fig. 7). The
recursion is simple:propagate traversesG− top-down from
the equivalence classes of the root relation ofJR (Line 06).
The estimated count of a leaf equivalence class is 1 (Line 02)
and that of an internal class is computed by the formulas in
Lines 07 and 08. Specifically, given a classc, Line 07 sums
up the counts propagated from the equivalence classes of a
child relation ofc. This formula assumes that the values of the
join attributes have the same probability in participatingthe
join. Therefore, one tuple inc obtains|Ec,c′ | / |c| of c′.est
on average, where weight|Ec,c′ | of the edge(c, c′) in G−

denotes the number of joinable pairs of tuples betweenc and
c′. Line 08 multiplies the counts from all child relations.

A restriction of JCard is that it assumes join trees, as
propagation always terminates. In practice, acyclic joinsare
common,e.g., all TCP-H queries, except one, are acyclic [44].
Example 6.1: Consider the viewV and the view updateu2

of inserting (S5, FL, P6, C3, A4) as shown in Fig. 1. Fig. 8
illustrates the propagation logic on theJCard of V (Fig. 5(c)).
Fig. 8(a) is the propagation without candidate tuples. The gray
boxes are the classes for the segments of the insertionu2, the
dashed boxes are the classes split from existing classes andthe
dotted lines denote the join related to the insertion. (The edge
weights that equal to 1 are omitted for presentation brevity.)

Firstly, u2 is decomposed into four segments:s′=(S5, FL)
for Supplier, p′=(S5, P6) for Product, a′=(A4, P6) for
Agency ando2=(C3, P6) for Order, wheres′, p′ anda′ are
new segments ando2 is an existing tuple.

In propagation without candidate tuples (Fig. 8(a)), we
construct an equivalent class for each segment. The classesare
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Fig. 8. Illustration of propagation of join cardinality

also denoted ass′, p′, o2 anda′, respectively, if it is clear from
the context. Since classo2 is split fromc1O, the size ofc1O is re-
duced by 1. Sincea′ is joinable withp2 in c1P , we add an edge
(a′, c1P ) into JCard and |Ea′,c1

P
| = 1. Initially, o2.est and

a′.est are 1 as they are of leaf relations. Next, we estimate the
join cardinality of internal nodes (Line 11 of Fig. 7). For exam-

ple, c1P .est=
c1O.est×|E

c1
O

,c1
P
|

|c1
P
|

×
a′.est×|E

a′,c1
P
|

|c1
P
|

=1×2
2 × 1×1

2 =0.5.

Since the number of embeddings inG− without insertion
is 0, we finally obtain the estimated number of new em-
beddings from the root relation asc1S .est×|c1S |+s′.est×|s′|
=0.5+1=1.5. This number is smaller than the real number2,
because of the averaging atc1P .

Fig. 8(b) is propagation with candidate tuples. The prop-
agation with candidate tuples is more accurate (Fig. 8(b)).
Suppose we have one set of candidate tuples{s1, p2, o2} in
Fig. 5(d). We splits1 and p2 from c1S and c1P , respectively,
and construct an equivalent class for each of them (shown
in dashed blocks);o2 keeps in the gray block as it is an
insertion segment. After the split,|c1S | = 0, |c1P | = 1,
|Ec1

O
,c1

P
| = 1 and |Ec1

P
,c1

S
| = 0. After the propagation, we ob-

tain the estimated number of new embeddings ass1.est×|s1|
+s′.est×|s′|=1+1=2 and the side effect is detected.

7 DELETIONS AND REPLACEMENTS
To complete the discussion on updates, we present the support
of deletions and replacements withJCard.
7.1 Deletions
In this subsection, we extendJCard to support deletions. The
side-effect detection on SJ views usingJCard is exact and
runs in PTIME [13], [14].

Recall thatG+ captures all the source tuples of a view. We
can useG+ to determine the side effect of deletions as below.

1) The detection uses the values of primary keys intv to
locate its segments from the relations inG+;

2) For each segment, if it occurs inV multiple times, this
segment is not deletable;

3) If all segments are not deletable,tv is not translatable;
Otherwise, we can delete any deletable segment as a
translation oftv.

If the deletion is side-effect free and translatable, we will
delete it fromG+ and update bothG+ andG−.
7.2 Replacements
The main idea of our technique to support replacements is to
transform a replacement to a deletion followed by an insertion.
Subsequently, we can adopt our techniques of deletions and
insertions to support replacements. Our method is developed
based on the following observation, which holds as the primary
keys of relations are present in the SJ views.

Proposition 7.1: Given a replacement replacingtv to t′v on a
SJ view, the replacement is side-effect free, iff the deletion of
tv is side-effect free and the subsequent insertion oft′v is also
side-effect free.
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Fig. 9. Illustration of replacement

Since the side-effect detection of deletions is exact, the
estimation error of replacement equals to that of the insertion;
and the replacement time is dominated by the insertion time.
Example 7.1:Fig. 9 illustrates the main steps of replacement.
The view is a join of relationsR, S andT (Fig. 9(a)), where
the primary keys are underlined. Figs. 9(b)-(e) are the database
graphG, source graphG+, negative graphG−, JCard before
insertion, respectively. Fig. 9(f) shows the propagation on the
JCard. Suppose we replace a view tuplev1 that joinsr1, s2
and t2 (shown in dashed lines in Fig. 9(c)) by another view
tuple v2 that joinsr3, s4 and t5, wherer3 and t5 are new.

We first deletev1 from G+. In its segments (i.e., r1, s2 and
t2), only t2 is deletable (shown by the circle in Fig. 9(c)) as it
just occurs once inV . Hence, the deletion has no side effect.
Second, we insertv2 into V . Following the technique proposed
in Sec. 6, we (i) find it does not join with any existing tuple
in G+ and then (ii) insert it intoG−. Fig. 9(f) shows that
the estimated number of new embeddings after insertion is
c1R.est+r3.est=2 and the side effect is detected.

8 PROJECTION
It has been known that if the view definitions involve projec-
tions, their view update problems often become NP-complete
[13], [14]. The main reason is that the attributes projectedout
(a.k.a., the missing attributes) can be primary keys, foreign
keys, or join attributes. This section presents an extension
of JCard to support views with projections. (We discuss
with insertions with missing join attributes as they are more
technically involved.) First, we fill in the feasible valuesfor the
missing attributes. Among many feasible fillings, we propose
a greedy methodto fill in values that may cause the fewest
side effects. Second, the cardinality equivalence is extended
with attribute values and the estimation algorithm is adjusted
accordingly to estimate side effects.

8.1 Filling in Missing Attributes
Due to projection, the tuple segments of a viewinsertion
contain missing (join) attributes which must be filled in, prior
to estimation of side effects. We call the tuple segments with
the missing attributes filled in afilling. There is a spectrum
of approaches for determining a filling without side effects.
For instance, one may directly employ a potentially costly
heuristic algorithm to determine a side-effect free filling, e.g.,
[12]. Another extreme is to fill in these attributes randomly
and estimate the side effects of the filling. This is repeated
until a filling with zero side-effect estimate is obtained orthe
insertion is simply rejected. In this subsection, we propose a
greedy approach for determining a filling.

Definition 8.1: A filling is feasibleif the following holds:

1) the filling does not violate integrity constraints and ref-
erential constraints of the source database; and
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Fig. 10. Illustration of projection

2) the filling satisfies the selection and joins of the view.

Let s be a tuple segment of a relationR, which is a relation
in the view definitionV. The joins are on primary keys and
foreign keys. Feasible fillings can be greedily determined by
the following rules:

Case 1.The projected attributeA is part of the primary key
of R.
1) Suppose there is some valuep in dom(A) that is not present
in R yet, we fill in s with the valuep. Note thatp is new and
does not have any existing joining tuples in other relations.
2) If no new primary key is available, we check the tuplests
in R that are consistent withs. The tuple ints with fewer
joining neighbouring tuples (edgesin database graphG) is
selected earlier.
Case 2.The projected attributeA is part of the foreign key
referencing to a relationR. We fill in the missing value ofA
such that it has the fewest number of joining tuples.

Feasible fillings are generated one by one according to
the above rules and are passed to the side-effect estimation.
Furthermore, users may specify a boundk on the number of
feasible fillings passed to the side-effect estimation, with a
trade-off on estimation accuracy.

8.2 Extension of JCard and Its Algorithm
Projections are defined with set semantics, where duplicate
values are “removed”. Due to the cardinality equivalence of
JCard proposed in Sec. 5, tuples with different values may be
placed in the same equivalence class. Subsequently, the estima-
tion algorithm may over-estimate side effects. Therefore,we
propose a refinement on the notion of cardinality equivalence.
In addition to the conditions in Definition 5.5, we introduce
a condition thatt1 and t2 arevalue-cardinalityequivalence if
they are cardinality equivalent andthey have the same values
on the projection attributes. We then constructextendedJCard
by using value-cardinality equivalence.

The estimation algorithm estimate_side_effects

(Fig. 6) is adjusted to incorporate with thevalue-cardinality
equivalence. Specifically, if the count of new embeddings is
larger than 1 +θ, then the estimator declares side effects.
Otherwise, the estimator declares no side effect. However,
the logic of the count propagation remains the same.

Example 8.1:Consider a view on a database of three relations,
Library L, Teaching T and Enrollment E (Fig. 10(a)).
The primary keys of the relations are underlined. Suppose
thatL.course refers toT.course andE.course also refers to
T.course. The tuple to-be-inserted is (jim, ie,B3). It can be
decomposed into segmentsl′=(X, B3), t′=(Y , ie) ande′=(jim,
Z), whereX, Y andZ are the missing attributes to-be-filled
in. Suppose the domain ofT .course is simply {db, os, ai,
ml}. A feasible filling f is: X=Y =Z=db. By usingf , t′=t4
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Procedure candidate_tuples
Input : join treeJV , negative graphG−, the number of

candidate setsk, the join attributesA of JV
Output : a set of candidate tuples

01 (tu, tv).capacity = ∞, ∀ (tu, tv) ∈ G−.E

02 for each (tu, tv) 6∈ G−.E
03 if t u ∈ Ru, t v ∈ Rv and (Ru, Rv) ∈ JV .E
04 add (tu, tv) into G−

05 set (tu, tv).capacity = log(max_prob((tu, tv)))
06 add a single sink and a single source to connect

the sink(s) and source(s) ofJV , respectively
07 add a sink and a source to connect the sink(s)

the source(s) ofeachconnected subgraph inG−

08 set the capacity of the edges connecting to the sink or
the source to infinity

09 C = ∅ andG′
= G− // initialization

10 while |C| < k andG′ 6= ∅
11 g = max_flow (G′)
12 G = extend(g)
13 C = C ∪ {t | t ∈ g′, g′ ∈ G}
14 for each g′ ∈ G G′ = G′ − g′

15 return C

Fig. 11. Procedure candidate_tuples

and the number of joining tuples betweenT andE is 1, ast4
joins with e′. The number of joining tuples betweenT andL
is 1, ast4 joins with l′. There are 2 joining tuples in total. If
X=Y =Z=ai, the number of joining tuples is 4; 3 for ml; and
4 for os. Hence, the greedy algorithm analyzesf first.

Fig. 10(b) shows theG− and the join cardinalities extended
with values. Fig. 10(c) shows the extendedJCard before
insertion and the propagation on theJCard is illustrated in
Fig. 10(d). propagate estimates that the view size after
inserting the filled tuples and returns 1 new embedding. Hence,
the insertion has no side effect.
Remark. For deletions, we use lineage technique (e.g., [16],
[23]) as a blackbox. We compute the lineage of the view tuple
to-be-deleted and then applyJCard to detect the side effects.

9 OPTIMIZATION PROBLEMS IN JCARD

There are two important optimization problems in the con-
struction ofJCard. In Sec. 9.1, we show that selecting the
candidate tuples ofJCard for accurate side-effect estimation
is equivalent to Minimum Set Cover (MSC) and illustrate how
approximation algorithms forMSC can be adopted to solve
the selection problem. In Sec. 9.2, we address the selection
of the representation of join trees, which is a crucial inputto
side-effect estimation.

9.1 Candidate Tuples Selection
To begin with, we formalize the problem of selection of
candidate tuples and investigate its hardness.

Definition 9.1:(Selection of Candidate Tuples (SCT)) Given
a space budgetB, a SPJ viewV and theG− summary of the
source database, select a set of candidate to minimize side-
effect estimation errors ofpropagate.

Theorem 9.1: SCT is NP-complete.

Next, we present a reduction from anSCT instance to an
MSC instance. For each possible insertionu, we create an
elementu in the universeU . For the tuplesi for selection,
we create a clauseCi. For eachsi whose selection leads to
the insertionsU accurate, we ensure thatu ∈ Ci, whereu ∈ U .
With such a reduction, it is straightforward that the optimal
solution of theMSC instance from this reduction is the optimal
solution for theSCT problem as well. Most importantly, the

approximation ratio of heuristics forMSC is trivially preserved
in such a simple reduction.

The MSC problem has known to be an NP-complete
problem that greedy algorithms work well with reasonable
bounds. Hence, we propose a greedy algorithm, namely Pro-
cedure candidate_tuples (shown in Fig. 11), which is
equivalent to a greedy algorithm ofMSC, whose approximation
ratio is known to beOPT × lg(U ).

We make two observations oncandidate_tuples. Firstly,
we do not require completely reducing anSCT instance to
an MSC instance incandidate_tuples. Secondly, there are
admittedly many heuristics for theMSC problem. We propose
Procedurecandidate_tuples in the style of a well-known
greedy algorithm for ease of analysis.

The main idea ofcandidate_tuples is to convert the
negative graphG− into a graph with a single source and
single sink (Lines 01-08). For the joinable tuples (edges) that
are not inG−, we introduce them intoG−. The capacity
of such an edge, denoted as (tu,tv), is the logarithm of the
probability of tuples with the join attribute values, wherewe
assume the values in the domain exhibituniform probability.
A subtle point is that the tuple segments inG−, by definition,
do not form an embedding (a view tuple). We simply apply
a maximum flow from the source to the sink (Line 11). The
flow is the sum of logarithm of probabilities, which is simply
proportional to the product of probabilities. This is equivalent
to picking the tuple segments that are most probable to form
a view tuple. Minor details include (i) extending the path
of maximum flow into a partial embedding, which is one
set of candidate tuples (Line 12) and iteratively selectingthe
embeddings from the negative graph untilk embeddings are
selected (Lines 10-14), wherek is a user-defined parameter.

The complexity ofcandidate_tuples is simply the com-
plexity of maximum flow multiplied byk.

9.2 Optimal Join Tree Selection
The join cardinality summaryJCard G− defined by Sec. 5
assumes a particular join treeJV of a given view definition
V, denoted asG−(JV ). However, givenV, there are|V|
join tree alternatives, whose accuracies may differ from each
other. In this section, we present a selection algorithm, that is
an adoption of simple sampling technique, to determine the
optimal join treeJopt

V with respect to its error produced by
the estimation algorithmpropagate.

A naive method to select an optimal join tree (i.e., with the
smallest error) is to enumerate all possible insertions of join
trees. Given aJCard of a join treeG−(JV ), one may deter-
mine the setM of possible insertions by Definition 4.3. Given
a particular insertionm ∈ M , its error can be determined
by calling propagate with G−(JV ) and m and comparing
the result with a side-effect detection. However, determining
the true error ofG(JV ) requires callingpropagate with all
permutations ofM .

We propose to simplify the computation on errors of join
trees for practical solutions. We make two assumptions on the
problem. First, we assume that insertions are equally probable.
Second, each insertion is independent. With these assumptions,
we can estimate the proportion of falsely estimated insertions
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TABLE 2
Characteristics of datasets

# of
tables

max table
size

avg. table
size

avg. fan-
out of G

TPC-H 200M 6 1,200,000 288,671 131.75
400M 6 2,400,000 577,338 262.81
600M 6 3,600,000 866,005 393.86
800M 6 4,800,000 1,154,671 524.98
1G 6 6,000,000 1,443,338 659.06

DBLP 6 245,888 73,489 4.32
SYNTHETICDB 6 30,000 18,000 2.03

by using sampling. The sample size can be determined by
estimation of proportion. In a nutshell, without information
about future insertions, we may exploit the maximum variance
of samples to estimate the true error.The classical result is that
the error bound can be determined by4

√

0.25/|S|, whereS is
a sample.For example, the error bound is 5% when the sample
size is 400. Furthermore, if the relative accuracies between join
trees cannot be distinguished due to errors of sampling, more
insertions can always be sampled.

Finally, the details with deletions are similar and deletions
are always bounded by the view size.

10 EXPERIMENTAL EVALUATION

This section presents a comprehensive experimental evaluation
that verifies the efficiency and effectiveness of our techniques.

Experimental settings. We ran our experiments on a PC
with a Quad-core 2.4GHz CPU running Ubuntu 11.04. Our
implementation was written in C++, using MySQL 5.1. The
maximum memory for our C++ program was set to only 500M
bytes. In this experiment, the memory representation of the
largest test dataset could not fit into 500M byte memory.
Moreover, our algorithms are independent of graph storage
which is a research topic in and of itself.

Benchmark datasets.We use two publicly available datasets
TPC-H [44] and DBLP [40], and one synthetic datasetSYN-
THETICDB that is implemented by ourselves. There is no dan-
gling tuple in TPC-H and DBLP. Hence, we randomly sample
subsets of tuples from their relations, respectively, to obtain the
benchmark datasets. RegardingTPC-H, we sampled five test
datasets fromTPC-H of scaling factor 4.0. They are of the sizes
200M, 400M, 600M, 800M and 1G, respectively. We use the
1G dataset by default, unless otherwise specified. Regarding
DBLP, we sampled half tuples from the fullDBLP [40] as
our test dataset. RegardingSYNTHETICDB, the generator is
tunable with four parameters: relation number, relation size,
primary and foreign key join direction (e.g., R1.FK referred
to R0.PK denoted a join fromR0 to R1) and the maximum
tuple fan-out (e.g., fan-out of a tuple inR0 is the number of
tuples inR1 joinable with it). Some characteristics of the three
datasets are reported in Table 2.

Error metrics. Let M be the set of insertions tested. Denote
S+ and S− be the real-positive and real-negative insertions
in M , respectively. In this experiment, we set|S+| = |S−|.
Let A+ be the estimated positive insertions inS− and A−

the estimated negative insertions inS+. We define the false
negative (FN) to be |A−|

|S+| and the false positive (FP) to be |A+|
|S−| .

Query workload. RegardingTPC-H, the view is a simplified
Q7 in TPC-H [44]. For illustration purposes, we focus on the
joins in Q7. We testedall join queries in [44] and obtained
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Fig. 12. ROC curves of JCard on TPC-H and DBLP
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Fig. 13. Comparison with EDS on TPC-H and DBLP

similar results (detailed in Appendix E). We use the view on
the full TPC-H to obtain possible insertions.

RegardingDBLP, we generated a set of views randomly. The
last query in Fig. 20 shows the view template. We also use
the view on the fullDBLP [40] to obtain possible insertions.

Regarding SYNTHETICDB, we use the query joining all
tables as our view. The insertions were generated by the
generator with the same parameters.

In this experiment, we analyze the performance of our
techniques onFP, FN and the estimation time, respectively.The
reported performances are averaged performances on 1,000
view updates.We often plot the performances of variousjoin
trees(though they may be overlapping) to show our technique
is robust against join trees selection.

Experiment A: ROC curve of JCard.
Figs. 12(a)-(b) show the ROC curves ofJCard on TPC-

H and DBLP, respectively. To illustrate the performances of
JCard in various scenarios, we generate artificial updates that
have tiny side effects, which are hard to estimate, mixed
with random updates. TheJCard has no candidate tuple.
Fig. 12(a) shows the ROC curves and verifies that our side-
effect estimation performs very well. For instance, the AUCof
JCard is 0.74 on workloads with30% hard updates. From the
figure, as expected, the fewer the hard updates, the larger the
AUC. We observe similar results fromDBLP (see Fig. 12(b)).
We remark that the hard updates are carefully generated by
examining the joining tuples from the datasets, which are rare
if all updates are considered equally probable. Hence, we focus
on random updates in the remaining experiments.

Experiment B: Comparison with EDS
Next, we compare the performances ofJCard with our

implementation of the latest related workEDS technique [20].
Since EDS does not produce errors, we report its runtime in
this experiment. For a fair comparison, we report the runtime
of an exactJCard (i.e., no tuple is summarized). In addition,
we observe that theJCard summarizing 90% tuples can still
comfortably attain no error. Hence, we report the runtime
of such aJCard, as a reference. Figs. 13(a)-(b) present the
runtime onTPC-H andDBLP, respectively. In Fig. 13(a), thex-
and y-axes are the dataset size and the runtime, respectively.
From Fig. 13(a), we note that the exactJCard is already
at least one order of magnitude faster thanEDS and the
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Fig. 14. Side-effect estimation error of JCard

performance gap increases as the dataset size increases. We
observe similar results in Fig. 13(b).

A possible reason is thatEDS is designed for theXML views,
whose advantages cannot be fully observed from relational
views. More specifically, inEDS, the values of EDS attributes
of tuples can be updated without causing any side effect. An
attribute is EDS if (I) its values do not appear in theXML view
(i.e., the attribute is projected out); or (II) its values appear in
the view only once and they are not accessed elsewhere in
theXML view definition.XML uses subtrees to naturally model
one-to-many relationships such as the relationship between
Person andInProceedings in DBLP. In contrast, when
encoded in relational views, both person and proceeding
entities appear multiple times in the views. Due to Condition
(II), most (if not all) attributes of the relational views are not
EDS. As a result, costly update analysis is needed.

From Figs. 13(a)-(b), we also note that theJCard summa-
rizing 90% tuples is even faster.

Experiment C: Overall performance of JCard
Estimation error. We selectx% candidate tuples and study the
estimation error ofJCard. We use the three datasets and set
θ=0.4. Fig. 14 reports the result. Figs. 14(a)-(c) showFPs (i.e.,
the real error ofJCard). Figs. 14(a)-(c) show that the selection
of candidate tuples is effective in reducing the estimationerror.
In particular, FP reduces as selecting more candidate tuples.
After a certain small percentage (e.g., 6% in Fig. 14(a), 10%
in Fig. 14(b) and 2% in Fig. 14(c)),FP approaches to zero.
We observe similar results ofFN in Figs. 14(d)-(f).

In addition, we observe that if the optimal join tree is used,
even no candidate tuple is selected, the estimation error of
JCard can be zero as shown in Figs. 14(b), (d) and (e).

Finally, this experiment verifies that the accuracies ofJCard

of different join trees are different, which is more notableon
SYNTHETICDB as shown in Figs. 14(c) and (f).

Detection time vs. estimation time.We then compare the
detection time of an exactJCard (i.e., no tuple is summarized)
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Fig. 15. Side-effect estimation time of JCard

and the estimation time ofJCards summarizing1−x% tuples.
The average detection time ofTPC-H, DBLP and SYNTHET-
ICDB is about 3s, 0.18s and 60ms, respectively. Their average
estimation time is reported in Figs. 15(a)-(c), respectively.
Figs. 15(a)-(c) show that our estimation is much faster thanthe
detection. In particular, onTPC-H, when 6% candidate tuples
are selected,FP is zero (Fig. 14(a)), but the estimation time is
about 700ms (Fig. 15(a)), which is about 4 times smaller than
the detection time. This is because that theJCard summarizes
about 90% non-candidate tuples in equivalence classes, which
can clearly save the propagation time of join cardinalities. We
observe similar results onDBLP (Fig. 14(b) and Fig. 15(b))
and SYNTHETICDB (Fig. 14(c) and Fig. 15(c)).

Moreover, the estimation time increases roughly linearly
with the percentage of candidate tuples selected. The “slope”
is about 80ms, 5ms and 2ms per 1% candidate tuples selected
on TPC-H, DBLP and SYNTHETICDB, respectively.

Scalability test. We tested the scalability of theJCard using
TPC-H. In this experiment, we tune theJCard to be error free
and focus on its estimation time. Specifically, we select 10%
candidate tuples and setθ = 0.4. (From Figs. 14(a) and (d),
we note that theJCard is error free at such a setting.) The
result is reported in Fig. 15(d). From Fig. 15(d), we observe
that the join trees have similar estimation time and the growth
of time is almost linear as the dataset size increases. However,
it is always much faster than the detection time as discussed.

Experiment D: Optimizations on JCard
In this experiment, we focus onTPC-H as other datasets

exhibit similar performance characteristics.
Effectiveness of equivalence classes.Previous experiments
verify the importance of candidate tuples and this experiment
shows the importance of equivalence classes, by skipping
them. Fig. 16(a) reports the result. Consistent with the estima-
tion with equivalence classes (Fig. 14(d)), the error reduces as
we select more candidate tuples. However, when comparing
Fig. 14(d) and Fig. 16(a), we note that the equivalence
classes sometimes offer more than an order of magnitudes
improvement on accuracies.

This experiment can be modified to show the effectiveness
of candidate tuple selection. Fig. 16(a) further shows thatour
candidate tuple selection outperforms a random method. In
particular, when10% candidate tuples are selected, ourFN is
close to zero. Whenx=9%, our FN is 3%, whereas that of the
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Fig. 16. Effectiveness of optimizations on TPC-H

random method is 75%. Fig. 16(a) does not showFP as FP

does not occur when equivalence classes are skipped.
Candidate tuple selection.To show the effectiveness of our
candidate tuple selection approach, we compare itsFPs (the
real error) with theFPs of a random approach. Both approaches
use equivalence classes. Fig. 16(b) shows that our technique
significantly outperforms the random approach. In particular,
whenx = 2%, our FP is zero, whereasFP of the latter is 0.29.
We obtained similar comparison results forFNs.

Join tree selection.We then tested the sampling-based join
tree selection technique presented in Sec. 9. SinceFP is the
real error ofJCard, we present the accumulatedFP of 1,000
real-negative insertions in Fig. 16(c). In this experiment, we
select no candidate tuple and setθ = 0.4. First, with reference
to Fig. 14(a), we note that our sampling technique produced
the optimal join trees. Second, we note that the estimation
error converges quickly,i.e., after 700 sample insertions.

Experiment E: Deletions and replacements.
In this experiment, we tested the performance of the support

of deletions and replacements as reported in Fig. 17(a). Since
the error of replacements is identical to that of insertions(as
discussed in Sec. 7), we focused on the estimation time here.
We selected 10% candidate tuples. Fig. 17(a) shows that the
time overhead of deletions is tiny (e.g., 14.3ms for the dataset
of 1G bytes); and the replacement time is almost the same as
the insertion time (Fig. 13(a)).

Experiment F: Projections
Next, we show the results on views with projections. We

use onSYNTHETICDB as it is easier to control. We project
out some attributes of relations randomly, where the primary
keys and the join attributes may be projected out. As remarked
in Sec 8, when needed, we adopt lineage technique (e.g., [16],
[23]) as a blackbox to trace the tuples to-be-updated.

Estimation error. To study the performances of incorporating
lineage technique intoJCard, we vary the number of relations
of views. Figs. 17(b)-(c) presentFPs of insertions and deletions
of our extendedJCard, respectively. Figs. 17(b)-(c) show that
with more joins,FP increases rapidly, as it is harder to estimate
join cardinalities accurately with more joins [28]. However,
FPs are well controlled under 6%. There is noFN due to the
set semantics of projections.

Estimation time and lineage computation time.Figs. 17(d)-
(e) report the estimation time ofJCards withx% candidate tu-
ples on insertions and deletions, respectively. From Fig. 17(d),
we observe that the estimation on views with projections takes
longer time than that without projections (Fig. 15(c)). For
example, when the views contains six relations andx = 0,
JCards for views without projections are roughly 300 times
faster than those with projections. It is not surprising because
propagating tuple values is more time-consuming than prop-
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Fig. 17. Estimation time of replacements and perfor-
mance results of JCard on views with projection

agating counts. Fig. 17(d) also shows the estimation time of
JCards on views having four and five relations. As expected,
the estimation time increases rapidly as the number of relations
increased. Importantly, the side-effect estimation timesare
significantly smaller than the translation time.

Further, we illustrate a simple performance breakdown of
total deletion time. (We do not show view insertions as they are
not supported by lineage.) We set the view with four tables
for simplicity and vary the percentage of candidate tuples.
Fig. 17(e) shows that deletions always take less than 0.5s. In
addition, the lineage computation accounts for a small fraction
of the total time (e.g., 6% of total time whenx = 10%).

[16], [23] are capable of exact view deletions. Deletion
translation time dominated the time of lineage computation
[16] or retrieval [23]. Fig. 17(e) reports their time (24.3sfor
[16] and 24.2s for [23]). It is clear thatJCard is significantly
more efficient. Even whenx = 100% (where no tuple is
summarized and no error is produced byJCard), JCard is
about two orders of magnitude faster than [16] and [23].

Feasible filling.Finally, we compare our greedy approach with
a random filling approach as shown in Fig. 17(f). We also
show FP of enumerating all possible fillings, as a reference.
Fig. 17(f) shows that when the number of feasible fillingsk
is fixed (e.g., k=5 or k=10), our approach is clearly more
accurate than the random approach.

11 CONCLUSIONS
In this paper, we proposed a data-oriented approach to provide
practical support for the view update problem. Specifically, we
proposed a side-effect detector for SPJ views that estimates
or detects whether a view update causes side effects and
rejects untranslatable updates early, in turn avoiding costly
update translations. The core of the detector was a novel
structure — the update filter. In this paper, the update filteris
a join cardinality summaryJCard that consists of structures
that summarize (extended) dangling tuples and the source of
view tuples.JCard is derived from a notion of cardinality
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equivalence. We proposed an estimation algorithm onJCard,
and we extendedJCard to support projections. We presented
optimizations to construct an efficient and accurateJCard.
Extensive experiments demonstrated thatJCard could be
tuned to be accurate onTPC-H, DBLP and our synthetic dataset.
All proofs are available in the appendices.

With regard to future work, we are investigating a larger
class of view definitions such as views with unions and
selections with inequality.
Acknowledgement. This work is partly supported by
GRF210510 and GRF210409.
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APPENDIX A
PROOFS

In this appendix, we provide the proofs of all propositions and
theorems in the paper.

A.1 Proof of Proposition 4.1

Proposition 4.1: When KL divergence of the
estimated distribution of insertions tends to 0, i.e.,
KL(PD(M,V||PE(M,V)) → 0, the expected false positives
of the detector tends to 0, i.e.,EXP (E+(M,V)) → 0.

Proof: Recall thatM and V are the random variables
of insertions and views, respectively;θ is the user-defined
parameter in the definition of false positives. Let|V | be the
size of a viewV ∈ V before an insertion. LetCP (M,V )
denote the Cartesian product of relations involved in the view
V after the insertionM ∈ M. Then, the expected number of
false positives is:

EXP (E+(M,V))

=
∑

V ∈V

∑

M∈M
P (M,V ) × E+(M,V )

=
∑

V ∈V
P
(

fest(M, V ) ≥ |V | + 1 + θ, freal(M, V ) = |V | + 1
)

≤
∑

V ∈V
P
(

fest(M, V ) − freal(M, V ) ≥ θ
)

≤
∑

V ∈V
P
(

|fest(M, V ) − freal(M, V )| ≥ θ
)

<
∑

V ∈V

EXP
(
∣

∣fest(M, V ) − freal(M, V )
∣

∣

)

θ

by Markov’s inequality

=
∑

V ∈V

∑

M∈M
P (M) ×

∣

∣fest(M,V ) − freal(M,V )
∣

∣

θ

≤
∑

V ∈V

∑

M∈M

∣

∣fest(M,V ) − freal(M,V )
∣

∣

θ

=
∑

V ∈V

∑

M∈M

∣

∣fest(M,V ) − freal(M,V )
∣

∣

θ

=
∑

V ∈V

∑

M∈M

∣

∣|CP (M,V )| × PE(M,V ) − |CP (M,V )| × PD(M,V )
∣

∣

θ

similar to Getoor et al. [22]

=
∑

V ∈V

∑

M∈M

|CP (M,V )| ×
∣

∣PE(M,V ) − PD(M,V )
∣

∣

θ

≤ |CP | ×
∑

V ∈V

∑

M∈M

∣

∣PE(M,V ) − PD(M,V )
∣

∣

θ

where|CP | = max{|CP (M,V )|}

≤
|CP |

θ
× KL(PD(M,V)||PE(M,V))

by Pinsker’s inequality

Therefore the expected error is bounded byKL divergence.

A.2 Proof of Proposition 4.2

Proposition 4.2: When KL divergence of the
estimated distribution of insertions tends to 0, i.e.,
KL(PD(M,V)||PE(M,V)) → 0, the expected false negatives
of the detector tends to 0, i.e.,EXP (E−(M,V)) → 0.

Proof: The total number of false negatives is:

EXP (E−(M,V))

=
∑

V ∈V

∑

M∈M
P (M,V ) × E−(M,V )

=
∑

V ∈V
P
(

fest(M, V ) < |V | + 1 + θ, freal(M, V ) ≥ |V | + 2
)

≤
∑

V ∈V
P
(

freal(M, V ) − fest(M, V ) ≥ 1 − θ
)

≤
∑

V ∈V
P
(
∣

∣

∣
freal(M, V ) − fest(M, V )

∣

∣

∣
≥ 1 − θ

)

≤
∑

V ∈V

EXP
(
∣

∣freal(M,V )−fest(M,V )
∣

∣

)

1−θ
,

by Markov’s inequality

=
∑

V ∈V

∑

M∈M
P (M)

∣

∣freal(M,V ) − fest(M,V )
∣

∣

1 − θ

≤
∑

V ∈V

∑

M∈M

∣

∣freal(M,V ) − fest(M,V )
∣

∣

1 − θ

=
∑

V ∈V

∑

M∈M

∣

∣freal(M,V ) − fest(M,V )
∣

∣

1 − θ

=
∑

V ∈V

∑

M∈M

∣

∣|CP (M,V )| × PE(M,V ) − |CP (M,V )| × PD(M,V )
∣

∣

1 − θ

similar to Getoor et al. [22]

=
∑

V ∈V

∑

M∈M

|CP (M,V )| ×
∣

∣PE(M,V ) − PD(M,V )
∣

∣

1 − θ

≤ |CP | ×
∑

V ∈V

∑

M∈M

∣

∣PE(M,V ) − PD(M,V )
∣

∣

1 − θ

where|CP | = max{|CP (M,V )|}

≤
|CP |

1 − θ
× KL(PD(M,V)||PE(M,V))

by Pinsker’s inequality

Similar to the derivation of Proposition 4.1, the total number
of false negatives and the expected error (false negatives)are
bounded byKL divergence.

A.3 Proof of Theorem 9.1

Theorem 9.1: SCT is NP-complete.

Proof: We establish the hardness ofSCT by a reduction
from MINIMUM SET COVER (MSC).

We first recall the definition ofMSC: Given a universeU
and a setS of subsets ofU , we want to find a subsetC of S
such that (i)|C| ≤ B; (ii) the maximum number of elements
in U is covered.

Given an instance ofMSC, we construct an instance ofSCT

that contains the scenario shown in Fig. 19(b).
The instance ofSCT contains four parts. (i) We use possible

insertions to encode the universeU . (ii) We use selection
predicates to define possible insertions to be exactlyU . (iii) A
relationRi is used to encode a subsetCi ∈ S of MSC. (iv) A
segmentsji of a view tuple to-be-insertedti that already exists
in G− (Rj) is used to encode an elementui in Cj . The SCT

instance is encoding by composing such segments inG− in a
special way. Next, we elaborate the four parts below.

For simplicity, we refer the domain of a relation to denote
thedomain of the join attribute of the relationand the discus-
sion always focuses on join attributes only, unless specified in
(ii).

(i) For eachui in U , we define a view insertion, denoted as
ti.

(ii) To ensure thatti’s are the only possible insertions, we
introduce the following selection clauses. Specifically, for each
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Fig. 18. (a) Real view size change after insertion; (b) estimated view size change after insertion due to Jlineitem; and
(c) estimated view size change after insertion due to Jorder

insertionti: (s1i , s2i , ... smi ), we include a selection in the view
definition, σi: A1 = s1i ∧ A2 = s2i ∧ ... ∧ Am = smi , where
Ai’s are simply attributes ofsi’s.

(iii) Suppose theMSC instance containsm subsets, we create
m relations. Each relationRi encodes a subsetCi of the MSC

instance. The join of the view definition isR1 ⊲⊳ R2 ⊲⊳ ... ⊲⊳
Rm.

(iv) This part encodes the membership of an elementui in a
subsetCj . Denote thatti is composed by segments of tuples
(s1i , s2i , ... sji , ...). We can construct theG− graph such that
(iv.i) sji is newif ui 6∈ Cj and (iv.ii) sji exists inG−, but not in
the view,if ui ∈ Cj . Moreover, for (iv.ii),sji is placed in some
large equivalence class; and the class contains one tuplesji

′

joinable with some neighbouring tuples,e.g., sj+1
i and sj−1

i .
This forms the scenario in Fig. 19(b). Then we can always set
a thresholdθ such that the estimation always report zero side
effect for ti. SupposeCj = {ui1 , ui2 , ..., uik}, we makesj ′

= sji1
′ = sji2

′ = ... = sjik
′. Finally, to ensure thatsj ′ is selected

by our greedy algorithm, we add dummy tuplesDj s.t. sj ′ ∪
Dj misses only one tuple to form a full embedding.

The error caused by Case (iv.ii) can be avoided by selecting
the existing segments (i.e., candidate tuples) fromG− and
determine those side effects with them separately. TheSCT

problem is now to selectB candidate tuples to reduce the
most errors. Suppose that we selectedsj ′ from G−. When
either of the insertionsti1 , ti2 , ..., tik are encountered, the
estimation algorithm will locate the additional path formed by
sj ′, leads to a count at least 2.

Therefore, theSCT problem determines the least number of
sj ′’s to be selected fromG− which estimates the insertions
ti’s the most accurate with the budgetB. It is straightforward
that the selectedsj ’s are the subsetsCj ’s to-be-selected of the
MSC problem.

APPENDIX B
EXPERIMENTS WITH SIDE-EFFECT ESTIMATION
AND CLASSICAL CARDINALITY ESTIMATION

This appendix provides supplementary information for the ex-
periment discussed in Example 4.1 of Sec. 4. The experiment
tested the estimation of two estimators, namelyJlineitem and
Jorder, on the simplified Q7 ofTPCH. We generated 1800
random insertions,all with side effects. The threshold for side-
effect errorsθ was 1. Fig. 18(a) shows the actual change of
the size (i.e., the number of tuples) of the view on they-axis

after thex-th insertion on the view. Each dot represents one
insertion. Due to space constraint, it is not possible to derive
the exact numbers from the figure. However, we highlight
the change of 2, which indicates the boundary between the
presence and absence of the side effect. For example, a dot
with a y-value 14 means that the corresponding insertion
causes 14 new tuples and therefore has side effects.

The estimated counts of the change of the view size reported
by Jlineitem andJorder after the insertions are shown on the
y-axis of Fig. 18(b) and Fig. 18(c), respectively. Although it is
not possible to derive the overall errors from the figures, we
report that the errors ofcardinality estimation ofJlineitem
were 3.7 times smaller than those ofJorder. The figures
showed that the distribution of dots of Fig. 18(a) was closerto
that of Fig. 18(b) than that of Fig. 18(c). However, regarding
side-effect estimation, it is important forJlineitem andJorder
to estimate the number of side-effect free insertions,i.e.,
dots that have a value below 2. In Fig. 18(b), the number
of incorrect estimations ofJlineitem was 79. In comparison,
Fig. 18(c) showed thatJorder did not estimate any side-effect
free insertions. Therefore,Jorder was a perfect side-effect
estimator, with respect to the 1800 insertions.

APPENDIX C
DETAILS OF PROCEDURE update_equiv_class

In this appendix, we present the details of Procedure
update_equiv_class (Line 02 of Fig. 6).
update_equiv_class essentially splits the equivalence
classes ofJCard for higher estimation accuracies. (We
omit its pseudo-code since it involves tedious details on
manipulating nodes and edges.)

SupposeC is the the segments of the view tupletv to-be-
updated, we make anindividual equivalence classcs for each
segmentts in C. C will form at leastone embedding due to
css. If the segmentts exists (i.e., ts is in Rs of G−), we split
ts from its original equivalence class and form an individual
classcs, like in Example 6.1. On the other hand, ifts is new,
we create a new equivalence classcs for ts. Since it is certain
that ts is directly relevant to the update, havingcs specially
for ts improves the accuracy ofpropagate. To update the
weights of edges related tocs, as they are required by the
formula in Line 07 ofpropagate, we perform a local join
between.ts and the neighbouring relations ofRs in JV . . .

This update of equivalence classes often needs. relatively
little computation in practice. Firstly, the existing segments
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Fig. 19. Illustration of reasons of (a) false positives; and
(b) false negatives

of a view tuple to-be-inserted are directly retrieved from the
JCard. Secondly, its new segments are locally joined with the
existingJCard. These two steps are efficient.

Before ending this appendix, we note that ifpropagate
estimates thattv causes side effects, the splits and the edge
weights are revoked. Otherwise,propagate declarestv is
side-effect free and iftv can be translated and updated, we
merge the splitG− with Definition 5.5. Moreover, astv
is inserted, the extended dangling tuples related totv are
removed fromG− and inserted intoG+.

APPENDIX D
ANALYSIS OF SOURCE OF ESTIMATION ER-
RORS
This appendix analyzes how errors are caused byJCard and
the estimation algorithm in Fig. 6. Foremost, we present the
scenario where errors may occur.
Proposition 4.1: Given an insertion of view tupletv and the
setTv of segments oftv, if the number of new embeddings after
addingTv into G− is greater than 1, then (i) false positives
and (ii) false negatives are possible.

Proof: The proof can be established by deriving two small
examples.

Suppose the estimator declares side effects when the count
returned by Procedurepropagate is greater than or equal to
1 + θ. Otherwise, the estimator declares no side effect.

(i) We first illustrate false positives with a small example
shown in Fig. 19(a). We suppose that the view definition is
R ⊲⊳ S ⊲⊳ T . Suppose the segments of the view tupletv are
illustrated on theRHS of Fig. 19(a) and theJCard of G− is
shown on theLHS of the figure. For simplicity, we assume
the segmentt1 is new; and the segments (t2 andt3) of R and
S are old. We sketch the equivalence classes in theJCard

whose cardinalities are indicated for illustration only.
Suppose that the tuplet3 can join with a tuplets of S

and t′s can be joined witht1. Sincet′s is old and Procedure
propagate usesest of theequivalence classof t′s to conduct
estimation (Line 08). Whilet′s cannot join witht3, another
tuple ts, in the same class withts, can join with t3. By
Procedurepropagate, the count returned is 1 (due to the
new embedding) + 1× |Ec1,cs | × 1 / |cs|, whereEc1,cs is the
number of joinable tuple pairs between the classesc1 and cs
containingt1 and ts, respectively. Assume that the estimator
declares side effect (positive) when the estimation is greater
than or equal to 1 +θ, whereθ is a user-defined threshold.
Thus, there are false positives when|cs| / |Ec1,cs | ≤ 1 / θ.

(ii) Similarly, we can construct a case to show possible false
negatives, shown in Fig. 19(b). The insertion causes two new

embeddings as before. The tuple segments aret1, t2 and t3,
wheret1 is new andt2 andt3 are old.t1 joins with ts andts
in turn joins with t3. Procedurepropagate returns 1 + 1×
|Ec1,cs |× 1 / |cs|. The estimator returns false negative when
|cs| / |Ec1,cs | > 1 / θ.

Discussions.Fig. 19(a) illustrates how the join cardinality
is over-estimated due to the summarization of tuples, which
causes false positives. The join cardinality is over-estimated in
Fig. 19(a) ass1 ands2 are placed in the same equivalence class
c2S but they cannot join withr′. Assuming random insertions,
the larger the class is, the higher the probability such over-
estimation occurs.

Fig. 19(b) shows how the counts are “averaged out” among
the equivalence classes during propagation, which causes false
negatives. In Fig. 19(b), false negatives are directly propor-
tional to the size of equivalence classc2S .

These observations show that reducing the size of equiv-
alence classes reduces the errors. The selection of candidate
view tuples from equivalence classes (Sec. 5.2) is a refine-
ment of equivalence classes. One may be tempted to use
bisections to refine them until each class is smaller than
|Et′,c2

S
|/θ. However, our preliminary experiments show that

such a bisection-based method is not robust. In particular,
the estimation accuracy is very sensitive to the values ofθ.
No improvement can be observed until a certain number of
bisections are applied that led to a sharp increase of accuracies.

APPENDIX E
ADDITIONAL EXPERIMENTS

Due to space limitation, we could only highlight the rep-
resentative results in Sec. 10. Firstly, Sec. 10 presents the
experiments withQ7 from TPC-H. In this appendix, we present
the experimental results of all join queries onTPC-H and show
that the results are similar to thoseQ7 presented in Sec. 10.
Secondly, while Sec. 10 presents the effectiveness of our
optimization techniques withTPC-H, this appendix presents
a supplementary experiment on theDBLP dataset. Finally, this
appendix presents the performances ofJCard on replacements
on views with projections.

E.1 Benchmark with All Join Queries of TPC-H

In this experiment, we testJCard on all join queries ofTPC-
H [44] as listed in Fig. 20. In a nutshell, we extract the
join queries from theTPC-H. Q1 and Q6 involve only one
table and are thus omitted, as their side-effect detectionsare
straightforward. For the only cyclic join queryQ5, we broke
the cycle by randomly removing a join when detecting side
effects. We use the same settings as in Sec. 10. In particular,
we select 10% candidate tuples andθ was0.4. Similar to the
experiments in Sec. 10, we present the false positive (FP) and
false negative (FN). The result is shown in Table 3.

From Table 3, we observe that theFP and FN equal to zero
for almost all queries. Table 3 also compares the side-effect
estimation time and the exact detection time. We observe that
our side-effect estimation is on average 8.3 times faster than
the exact detection on average. This further verifies that side-
effect detection is often efficient while the estimation canbe
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TABLE 3
Performances of insertions on TPC-H benchmark queries

Query # of
tables

# of
joins

FP FN est.
time
(ms)

detect.
time
(ms)

Q1 1 0 - - - -
Q2 5 4 0 0 59.1 300.8
Q3 3 2 0 0 140.6 1096.6
Q4 2 1 0 0 45.5 442.5
Q5 6 6 0 0 699.5 1910.6
Q6 1 0 - - - -
Q7 6 5 0 0 716.1 2942.3
Q8 8 7 0 0 1767.8 5325.9
Q9 6 5 0 0 3087.1 6119.6
Q10 5 4 0.11 0 196.3 1104.5
Q11 3 2 0 0 5.2 57.7
Q12 2 1 0 0 42.9 505.5
Q13 2 1 0 0 10.3 93.4
Q14 2 1 0 0 66.1 720.2
Q15 2 1 0 0 16.2 427.4
Q16 2 1 0 0 6.6 68.8
Q17 2 1 0 0 66.1 720.2
Q18 3 2 0 0 140.6 1096.6
Q19 2 1 0 0 66.1 720.2
Q20 2 1 0 0 0.4 0.9
Q21 4 3 0 0 413.0 2244.1
Q22 2 1 0 0 10.3 93.4

easily tuned to be even more efficient and (at the same time)
highly accurate.

E.2 Supplementary Experiments of Optimizations
with DBLP

This experiment uses the same setting onDBLP as presented
in Sec. 10. Similar to the experiments of optimizations on
TPC-H (Sec. 10 (Experiment D)), we present the results of the
optimizations by presenting the effectiveness of equivalence
classes and the join tree selection.
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Fig. 21. Performances of optimizations on DBLP

Effectiveness of equivalence classes.This experiment verifies
that the equivalence classes are indeed important, by skipping
the equivalence classes in the side-effect estimation. We only
report theFN in Fig. 21(a) as the removal of the equivalence
classes will not causeFP. We use the optimal join tree as
shown in Fig. 14(b) and Fig. 14(e). Foremost, the results are
consistent with those presented earlier – the more candidate
tuples selected, the smaller the errors. We observe that thees-
timation errors could be large without the equivalence classes.
When we compare the difference of errors with and without
the equivalence classes (Fig. 14(e) and Fig. 21(a)), we notethat
the equivalence classes significantly improves the accuracies.

Join tree selection.We perform the sampling method to select
optimal join trees as presented in Sec. 9. SinceFP is the real
error of theJCard, we present the accumulatedFP of 1,000
negative insertions as shown in Fig. 21(b). In this experiment,
we select no candidate tuple and setθ = 0.4. We note that
the estimated error converges quickly,i.e., after 400 sample
insertions. Considering with Fig. 14(b), we observe that our
sampling technique can easily determine the optimal join trees.
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Fig. 22. JCard’s error and runtime of replacements on
views having projections on SYNTHETICDB

E.3 Supplementary Experiments of Replacements
on Views with Projections

We testJCard’s performances of replacements on views with
projections. This experiment uses the same settings onSYN-
THETICDB as presented in Sec. 10. Similar to the experiments
of insertions and deletions (Sec. 10 (Experiment F)), we
presentJCard’s performances of replacements with respect to
both the side-effect estimation error and the estimation time.

Estimation error. Fig. 22(a) reportsFP of replacements of
our extendedJCard on views with projections. Fig. 22(a)
shows that with more joins,FP increases rapidly. This is
consistent with the result that it is harder to estimate join
cardinalities accurately with more joins [28]. However,FPs
are well controlled under 7%. There is noFN due to the set
semantics of projections.

Estimation time. Fig. 22(b) reports the estimation time of
JCards with x% candidate tuples on replacements. Fig. 22(b)
shows that replacements have almost identical estimation time
with insertions (Fig. 17(d)) as the times of deletions are very
small, e.g., less than 30ms whenx = 0% (Fig. 17(e)).
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select *

from

part,

supplier,

partsupp,

nation,

region

where

p partkey=ps partkey

and s suppkey=ps suppkey

and s nationkey=n nationkey

and n regionkey=r regionkey

Q2

select *

from

customer,

orders,

lineitem,

where

c custkey=o custkey

and l orderkey=o orderkey

Q3

select *

from

orders,

lineitem

where

and l orderkey=o orderkey

Q4

select *

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c custkey=o custkey

and l orderkey=o orderkey

and l suppkey=s suppkey

and s nationkey=n nationkey

and n regionkey=r regionkey

Q5

select *

from

customer,

orders,

lineitem,

supplier,

nation n1,

nation n2

where

s suppkey=l suppkey

and o orderkey=l orderkey

and c custkey=o custkey

and s nationkey=n1.n nationkey

and c nationkey=n2.n nationkey

Q7

select *

from

part,

supplier,

lineitem,

orders,

customer,

nation n1,

nation n2,

region

where

p partkey=l partkey

and s suppkey=l suppkey

and l orderkey=o orderkey

and o custkey=c custkey

and c nationkey=n1.n nationkey

and n1.n regionkey=r regionkey

and s nationkey=n2.n nationkey

Q8

select *

from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s suppkey=l suppkey

and ps suppkey=l suppkey

and ps partkey=l partkey

and p partkey=l partkey

and o orderkey=l orderkey

and s nationkey=n nationkey

Q9

select *

from

customer,

orders,

lineitem,

nation

where

c custkey=o custkey

and l orderkey=o orderkey

and c nationkey=n nationkey

Q10

select *

from

partsupp,

supplier,

nation

where

ps suppkey=s suppkey

and s nationkey=n nationkey

Q11

select *

from

orders,

lineitem

where

l orderkey=o orderkey

Q12

select *

from

customer,

orders

where

c custkey=o custkey

Q13

select *

from

lineitem,

part

where

l partkey=p partkey

Q14

select *

from

supplier,

lineitem

where

l suppkey=s suppkey

Q15

select *

from

partsupp,

part

where

p partkey=s suppkey

Q16

select *

from

lineitem,

part

where

l partkey=p partkey

Q17

select *

from

customer,

orders,

lineitem,

where

c custkey=o custkey

and l orderkey=o orderkey

Q18

select *

from

lineitem,

part

where

l partkey=p partkey

Q19

select *

from

supplier,

nation

where

s nationkey=n nationkey

Q20

select *

from

supplier,

lineitem,

orders,

nation

where

s suppkey=l suppkey

and o orderkey=l orderkey

and s nationkey=n nationkey

Q21

select *

from

customer,

order

where

o custkey=c custkey

Q22

select *

from

Person,

RelationPersonInProceeding,

InProceeding,

Proceeding

where

PName=’bob’

and <join conditions>

dblp

Fig. 20. The list of all join queries from TPC-H and the form of views from DBLP


